Acta Univ. Agric. Silvic. Mendelianae Brun. 2023, 71(5), 271-282

The First Settlers of Newly Built Pools: Zooplankton and Phytoplankton Case Study in Southern Moravia

Lenka Kratochvílová1, Radovan Kopp1, Petr Chalupa2, Pavla Řezníčková1, Tomáš Brabec1, Radim Petrek3
1 Department of Zoology, Fisheries, Hydrobiology and Beekeeping, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
2 Ministry of Agriculture of the Czech Republic, Těšnov 65/17, 11000 Praha 1, Czech Republic
3 Hamer Fishing, U Parku 205, 739 61 Třinec, Czech Republic

The biodiversity of pool ecosystems is nowadays fully dependent on building of new ones or reconstructing the damaged ones. Among the factors influencing the potential of being colonised are the habitat's local characteristics including abiotic and biotic factors. One of the most important key roles in the food chains of freshwaters play zooplankton and its high dispersal rate makes them successful colonists of new habitats. Together with phytoplankton and nutrient content development, the state and following evolution of pool ecosystem can be assessed. The aim of this study was to survey initial zooplankton succession of newly built pools and to assess the main influencers on its colonisation success. Two newly built pools (Pool 1 and Pool 4) with different morphometric characteristics were monthly sampled for zooplankton, phytoplankton and physico-chemical characteristics. Zooplankton individuals were sorted according to taxa and stage as cladocerans, copepods (adults), nauplii and rotifers; and according to size structure as follows: < 0.5 mm, 0.5-1 mm, 1-2 mm and > 2 mm. Phytoplankton species were sorted in five categories: cyanobacteria, cryptomonads, green algae, diatoms and other algae. Basic physico-chemical parameters were measured and nutrient analysis were carried out. In Pool 1, first colonists were rotifers, followed by various cladoceran taxa. Rapid increase of large cladoceran species occurred in late spring. Till the end of the survey, rotifers together with nauplii predominated. Larger copepods were constantly present since late spring. In Pool 4, first colonists were rotifers, followed by copepod nauplii which predominated till the end of survey. Larger zooplankton species peaked in summer. In the first season after inundation, the presence of a massive biomass of charophytes and subsequently green filamentous algae was crucial for the development of the communities in both pools - significantly reduced the development of phytoplankton, caused high water clarity and affected the development of zooplankton. Because there were nutrients released from the sediment nutrient pool inflicted by fertilisation of intensively farmed field, significant fluctuations in pool ecosystem were observed. Also the morphometric characteristics of the pool, such as size, shape, depth and slope of the shores indicated the suitability of the habitat for successful zooplankton colonisation.

Keywords: physico-chemical parameters, phytoplankton, pool, succession, zooplankton

Received: April 17, 2023; Revised: September 26, 2023; Accepted: September 27, 2023; Published: November 1, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kratochvílová, L., Kopp, R., Chalupa, P., Řezníčková, P., Brabec, T., & Petrek, R. (2023). The First Settlers of Newly Built Pools: Zooplankton and Phytoplankton Case Study in Southern Moravia. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis71(5), 271-282
Download citation

References

  1. ALLEN, M. R., VAN DYKE, J. N. and CÁCERES, C. E. 2011. Metacommunity assembly and sorting in newly formed lake communities. Ecology, 92(2): 269-275. Go to original source...
  2. APHA. 1998. Standard methods for the examination of water and wastewater. 20th edition. Washington, D.C.: American Public Health Association Inc.
  3. AUDET, C., MACPHEE, S. and KELLER, B. 2013. Constructed ponds colonised by crustacean zooplankton: Local and regional influences. Journal of Limnology, 72(3): e43. Go to original source...
  4. KOPP, R., ŘEZNIČKOVÁ, P., HADAŠOVÁ, L., PETREK, R. and BRABEC, T. 2016. Water Quality and Phytoplankton Communities in Newly Created Fishponds. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64(1): 71-80. Go to original source...
  5. AUSTIN, A. R. and SCHRIEVER, T. A. 2023. Created wetlands support similar communities of low conservation value as established wetlands in Michigan. Wetlands Ecology and Management, 31: 521-537. Go to original source...
  6. BALLS, H., MOSS, B. and IRVINE, K. 2006. The loss of submerged plants with eutrophication I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broadland. Freshwater Biology, 22(1): 71-87. Go to original source...
  7. BIELAŃSKA-GRAJNER, I. and GŁADYSZ, A. 2010. Planktonic rotifers in mining lakes in the Silesian Upland: Relationship to environmental parameters. Limnologica, 40(1): 67-72. Go to original source...
  8. BILTON, D. T., FREELAND, J. R. and OKAMURA, B. 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics, 32: 159-181. Go to original source...
  9. BLINDOW, I., HARGEBY, A., WAGNER, B. M. A. and ANDERSSON, G. 2000. How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwater Biology, 44(2): 185-197. Go to original source...
  10. BOHONAK, A. J. and JENKINS, D. G. 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters, 6: 783-796. Go to original source...
  11. CÁCERES, C. E. and SOLUK, D. A. 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia, 131: 402-408. Go to original source...
  12. CELEWICZ, S. and GOŁDYN, B. 2021. Phytoplankton communities in temporary ponds under different climate scenarios. Sci. Rep., 11: 17969. Go to original source...
  13. CHRISOSTOMOU, A., MOUSTAKA-GOUNI, M., SGARDELIS, S. and LANARAS, T. 2009. Air-dispersed phytoplankton in a Mediterranean River-Reservoir System (Aliakmon-Polyphytos, Greece). Journal of Plankton Research, 31(8): 877-884. Go to original source...
  14. COHEN, G. M. and SHURIN, J. B. 2003. Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos, 103(3): 603-617. Go to original source...
  15. CURREN, E. and LEONG, S. C. Y. 2020. Natural and anthropogenic dispersal of cyanobacteria: areview. Hydrobiologia, 847(13): 2801-2822. Go to original source...
  16. DAVIDSON, N. C. 2014. How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10): 934-941. Go to original source...
  17. DE MEESTER, L., DECLERCK, S., STOKS, R., LOUETTE, G., VAN DE MEUTTER, F., DEBIE, T., MICHELS, E. and BRENDONCK, L. 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat. Conserv., 15(6): 715-725. Go to original source...
  18. DIXON, M. J. R., LOH, J., DAVIDSON, N. C., BELTRAME, C., FREEMAN, R. and WALPOLE, M. 2016. Tracking global change in ecosystem area: The Wetland Extent Trends index. Biological Conservation, 193: 27-35. Go to original source...
  19. FINLAY, B. J. and CLARKE, K. J. 1999. Ubiquitous dispersal of microbial species. Nature, 400: 828. Go to original source...
  20. FOTT, J., KOŘÍNEK, V., PRAŽÁKOVÁ, M., VONDRUŠ, B. and FOREJT, K. 1974. Seasonal Development of Phytoplankton in Fish Ponds. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 59(5): 629-641. Go to original source...
  21. FRISCH, D. and GREEN, A. J. 2007. Copepods come first: rapid colonization of new temporary ponds. Fund. Appl. Limnol., 168(4): 289-297. Go to original source...
  22. FRYER, G. 1985. Crustacean diversity in relation to the size of water bodies: some facts and problems. Freshwater Biology, 15(3): 347-361. Go to original source...
  23. GARDNER, R. and FINLAYSON, M. 2018. Global wetland outlook: state of the world's wetlands and their services to people. Stetson University College of Law, Legal Studies Research Paper Series, Ramsar Convention Secretariat.
  24. GILBERT, J. D., MÁRQUEZ, F. J. and GUERRERO, F. 2023. Assessing the Zooplankton Metacommunity (Branchiopoda and Copepoda) from Mediterranean Wetlands in Agricultural Landscapes. Diversity, 15(3): 362. Go to original source...
  25. GRAHAM, L. E., GRAHAM, J. M. and WILCOX, L. W. 2009. Algae. 2nd edition. San Francisco: Pearson Education.
  26. GREEN, A. J. and FIGUEROLA, J. 2005. Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Diversity and Distributions, 11(2): 149-156. Go to original source...
  27. HADAŠOVÁ, L. and KOPP, R. 2014. Monitoring of the initial succession of zooplankton communities in newly created ponds within the Territorial System of Ecological Stability. In: Proceedings of the MendelNet 2014. Mendel University in Brno, Czech Republic, pp. 245-249.
  28. HAVEL, J. E. and SHURIN, J. B. 2004. Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnology and Oceanography, 49(4): 1229-1238. Go to original source...
  29. JENKINS, D. G. and BUIKEMA, A. L. JR. 1998. Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecological Monographs, 68(3): 421-443. Go to original source...
  30. KAŠTOVSKÝ, J., HAUER, T., MAREŠ, J., KRAUTOVÁ, M., BEŠTA, T., KOMÁREK, J., DESORTOVÁ, B., HETEŠA, J., HINDÁKOVÁ, A., HOUK, V., JANEČEK, E., KOPP, R., MARVAN, P., PUMANN, P., SKÁCELOVÁ, O. and ZAPOMĚLOVÁ, E. 2010. A review of the alien and expansive species of freshwater cyanobacteria and algae in the Czech Republic. Biol. Invasions, 12: 3599-3625. Go to original source...
  31. KELLER, W. and YAN, N. D. 1998. Biological recovery from lake acidification: zooplankton communities as a model of patterns and processes. Restor. Ecol., 6: 364-375. Go to original source...
  32. KOMÁRKOVÁ, J. 1998. Fish stock as a variable modifying trophic pattern of phytoplankton. Hydrobiologia, 369/370: 139-152. Go to original source...
  33. KOPP, R., ŘEZNIČKOVÁ, P., HADAŠOVÁ, L., PETREK, R. and BRABEC, T. 2016. Water Quality and Phytoplankton Communities in Newly Created Fishponds. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64(1): 71-80. Go to original source...
  34. KUCZYŃSKA-KIPPEN, N. and NAGENGAST, B. 2006. Zooplankton communities of a newly created small water body. Teka Kom. Ochr. Kszt. Srod. Przyr., 3: 115-121.
  35. LOREAU M. 2000. Are communities saturated? On the relationship between alpha, beta and gamma diversity. Ecology Letters, 3(2): 73-76. Go to original source...
  36. LORENZEN, C. J. 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr., 12: 343-346. Go to original source...
  37. LOUETTE, G. and DE MEESTER, L. 2005. High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology, 86(2): 353-359. Go to original source...
  38. LOUETTE, G. and DE MEESTER, L. 2007. Predation and priority effects in experimental zooplankton communities. Oikos, 116(3): 419-426. Go to original source...
  39. LOUETTE, G., DE MEESTER, L. and DECLERCK, S. 2008. Assembly of zooplankton communities in newly created ponds. Freshwater biology, 53(11): 2309-2320. Go to original source...
  40. MORENO, E., PÉREZ-MARTINÉZ, C. and CONDE-PORCUNA, J. M. 2016. Dispersal of zooplankton dormant propagules by wind and rain in two aquatic systems. Limnetica, 35(2): 323-336.
  41. MORENO, E., PÉREZ-MARTÍNEZ, C. and CONDE-PORCUNA, J. M. 2019. Dispersal of rotifers and cladocerans by waterbirds: seasonal changes and hatching success. Hydrobiologia, 834: 145-162. Go to original source...
  42. MULDERIJ, G., VAN DONK, E. and ROELOFS, J. 2003. Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia, 491(1): 261-271. Go to original source...
  43. OERTLI, B., JOYE, D. A., CASTELLA, E. I., JUGE, R., CAMBIN, D. G. and LACHAVANNE, J. B. (2002): Does size matter? The relationship between pond area and biodiversity. Biological Conservation, 104(1): 59-70. Go to original source...
  44. PITHART, D., PICHLOVÁ, R., BÍLÝ, M., HRBÁČEK, J., NOVOTNÁ, K. and PECHAR, L. 2007. Spatial and temporal diversity of small shallow waters in river Lužnice floodplain. Hydrobiologia, 584: 265-275. Go to original source...
  45. POULÍČKOVÁ, A. 2011. Základy ekologie sinic a řas. Olomouc: Univerzita Palackého v Olomouci.
  46. SCHEFFER, M. and VAN GEEST, G. J. 2006. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos, 112(1): 227-231. Go to original source...
  47. SCHRIVER, P., BØGESTRAND, J., JEPPESEN, E. and SØNDERGAARD, M. 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology, 33(2): 255-270. Go to original source...
  48. SHARMA, N. K., RAI, A. K., SINGH, S. and BROWN, R. M. 2007. Airborne algae: Their present status and relevance. J. Phycol., 43(4): 615-627. Go to original source...
  49. SHURIN, J. B. 2000. Dispersal limitation, invasion resistance and the structure of pond zooplankton communities. Ecology, 81(11): 3074-3086. Go to original source...
  50. SLUSARCZYK, M., PINEL-ALLOUL, B. and PIETRZAK, B. 2019. Mechanisms facilitating dispersal of dormant eggs in a planktonic crustacean. In: ALEKSEEV, V. and PINEL-ALLOUL, B. (Eds.). Dormancy in aquatic organisms. Theory, Human Use and Modeling. Monographiae Biologicae. Vol. 92. Springer, Cham. Go to original source...
  51. SOMMERS, E. J. and RYDER, J. L. 2023. A critical review of operational strategies for the management of harmful algal blooms (HABs) in inland reservoirs. Journal of Environmental Management, 330: 117141. Go to original source...
  52. SONG, K., FANG, C., JACINTHE, P. A., WEN, Z., LIU, G., XU, X., SHANG, Y. and LYU, L. 2021. Climatic versus anthropogenic controls of decadal trends (1983-2017) in algal blooms in lakes and reservoirs across China Environ. Sci. Technol., 55(5): 2929-2938. Go to original source...
  53. SOTO, D. and HURLBERT, S. H. 1991. Long-term experiments on calanoid - cyclopoid interactions. Ecol. Monogr., 61(3): 245-265. Go to original source...
  54. STANDARDS FOR NATURE AND LANDSCAPE MANAGEMENT. 2014. Creation and restoration of pools. Praha: Agentura ochrany přírody a krajiny ČR.
  55. STANOJKOVIĆ, A., SKOUPÝ, S., HAŠLER, P., POULÍČKOVÁ, A. and DVOŘÁK, P. 2022. Geography and climate drive the distribution and diversification of the cosmopolitan cyanobacterium microcoleus (Oscillatoriales, Cyanobacteria). Eur. J. Phycol., 57(4): 369-405. Go to original source...
  56. TEISSIER, S., PERETYATKO, A., BACKER, S. D. and TRIEST, L. 2012. Strength of phytoplankton - nutrient relationship: evidence from 13 biomanipulated ponds. Hydrobiologia, 689(1): 147-159. Go to original source...
  57. TER BRAAK, C. J. F. and ŠMILAUER, P. 2018. Canoco reference manual and user's guide: software for ordination, version 5.1x. Microcomputer Power, Ithaca, USA.
  58. VAD, C. F., HORVÁTH, Z., KISS, K. T., ÁCS, É., TÖRÖK, J. K. and FORRÓ, L. 2012. Seasonal dynamics and composition of cladoceran and copepod assemblages in ponds of a Hungarian cutaway peatland. International Review of Hydrobiology, 97(5): 420-434. Go to original source...
  59. VAN DONK, E. and VAN DE BUND, W. J. 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic botany, 72(3-4): 261-274. Go to original source...
  60. VANSCHOENWINKEL, B., GIELEN, S., SEAMAN, M. and BRENDONCK, L. 2008. Any way the wind blows - frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos, 117(1): 125-134. Go to original source...
  61. WATERKEYN, A., VANSCHOEWINKEL, B., ELSEN, S., ANTÓN-PARDO, M., GRILLAS, P. and BRENDOCK, L. 2010. Unintentional dispersal of aquatic invertebrates via footwear and motor vehicles in a Mediterranean wetland area. Aquatic Conserv: Mar. Freshw. Ecosyst., 20(5): 580-587. Go to original source...
  62. WEJNEROWSKI, Ł., AYKUT, T. O., PEŁECHATA, A., RYBAK, M., DULIĆ, T., MERILUOTO, J. and DZIUBA, M. K. 2022. Plankton hitch-hikers on naturalists' instruments as silent intruders of aquatic ecosystems: current risks and possible prevention. NeoBiota, 73: 193-219. Go to original source...
  63. WILLIAMS, P., WHITFIELD, C. M. and BIGGS, C. J. 2008. How can we make new ponds biodiverse? A case study monitored over 7 years. Hydrobiologia, 597: 137-148. Go to original source...
  64. YAN, N. D., GIRARD, R., HENEBERRY, J. H., KELLER, W., GUNN, J. M. and DILLONM, P. J. 2004. Recovery of copepod, but not cladoceran, zooplankton from severe and chronic effects of multiple stressors. Ecol. Lett., 7: 452-460. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.