Acta Univ. Agric. Silvic. Mendelianae Brun. 2023, 71(4), 183-192 | DOI: 10.11118/actaun.2023.013
Effect of endomycorrhizal fungi inoculum on agro morphological behavior and productivity of saffron (Crocus sativus L.) under water and salinity stress
- 1 Laboratory of Plant, Animal and Agro-Industry productions, Botany, Biotechnology and Plant Protection Team, Faculty of Sciences, Université ibn tofail-Kénitra-Morocoo
- 2 Laboratory of Molecular Chemistry and Environmental Molecules, Multidisciplinary Faculty of Nador-Mohammed I. University Oujda, Morocco
- 3 National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
- 4 Agrobiotechnology and Molecular Bioengineering Laboratory, Faculty of sciences and Techniques, Cadi Ayyad University, Marrakech, Morocco
The present work tried to evaluate whether arbuscular mycorrhizal fungi (AMF) affected physiological aspects of saffron corms by triggering flowering and dormancy together with improving growth parameter. Endomycorrhizal fungi inoculum was inoculated into potted saffron corms (Crocus sativus L.) exposed to stress conditions (water and salinity) and followed for two growing seasons. Results highlighted a variation among saffron responses to endomycorrhizal fungi inoculum under water and salinity stress. The mycorrhizal corms showed a regular flowering period that occurred earlier than that of non-inoculated with AMF. The superior values of morphological traits, such as leaf and root length, leaves number and daughter corm number were between 3 and 12 cm, 11 to 25 cm; 13.4-4.5; 7 and 3 at respective concentrations of 1 g/l and 5 g/l of NaCl. Similarly, in AMF inoculated saffron, no statistical difference was observed in the dry weight average of aerial part in plants facing water level 60% (0.38 g) and 40% (0.27 g) compared respectively to 0.36 g and 0.22 g in control plants. The fresh weight of aerial saffron parts were 2 g (1 g/L), 0.6 g/L and 0.33 g at 5 g/L of NaCl compared to 1.6 g, 0.4 g and 0.2 g in control plants. At water level of 60% and 40%, this weight decreased from 1.46 g to 0.85 g. Almost equal values of dry weight of root parts were noted at 3 g/L (0.33 g) and 5 g/L of NaCl (0.22 g) in saffron plants from bulbs grown in soil incorporated with AMF inoculum compared to 0.25 g (3 g/L) and 0.18 g at 5 g/L of NaCl in control plants.
Keywords: saffron, corms, salinity stress, water stress, flowering period, growth parameters
Received: September 8, 2022; Revised: June 10, 2023; Accepted: June 26, 2023; Published: August 31, 2023 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- ALIZADEH, A., SAYARI, N., AHMADIAN, J. and MOHAMADIAN, A. 2009. Study for zoning the most appropriate time of irrigation of saffron (Crocus sativus) in Khorasan Razavi, north and southern provinces. J Water Soil, 23: 109-118.
- AL-KARAKI, G. N., HAMMAD, R. and RUSAN, M. 2001. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 11, 43-47.
Go to original source...
- ALQARAWI, A., HASHEM, A., ABD ALLAH, E., ALSHAHRANI, T. and HUQAIL, A. 2014. Effect of salinity on moisture content, pigment system, and lipid composition in ephedra alatadecne. Acta. Biol. Hung., 65(1): 61-71. DOI: 10.1556/ABiol.65.2014.1.6
Go to original source...
- AUGE, R. M. 2012. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11: 3-42.
Go to original source...
- BÁRZANA, G., AROCA, R., PAZ, J. A., CHAUMONT, F., MARTINEZ-BALLESTA, M. C. and CARVAJAL, M. 2012. Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann. Bot., 109(5): 1009-1017. DOI: 10.1093/aob/mcs007
Go to original source...
- BEGUM, N., QIN, C., MUHAMMAD, A. A., RAZA, S., MUHAMMAD, I. K., ASHRAF, M., NADEEM, A. and ZHANG, L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in Abiotic Stress Tolerance Front. Plant Sci., 10: 01068. DOI: https://doi.org/10.3389/fpls.2019.01068
Go to original source...
- BENBRAHIM, K. F., ISMAILI, M., BENBRAHIM, S. F. and TRIBAK, A. 2004. Problèmes de dégradation de l'environnement par la désertification et la déforestation: impact du phénomène au Maroc. Sécheresse, 15(4): 307-320.
- BOWLES, T. M., BARRIOS-MASIAS, F. H., CARLISLE, E. A., CAVAGNARO, T. R. and JACKSON, L. E. 2016. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci. Total Environ., 566-567: 1223-1234.
Go to original source...
- CAIOLA, M. G., DI SOMMA, D. and LAURETTI, P. 2000. Comparative study of pollen and pistil in Crocus sativus L. (Iridaceae) and allied species. Annali di Botanica, 58: 73-82.
- CONVERSA, G., LAZZIZERA, C., BONASIA, A. and ELIA, A. 2013. Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. BiolFertil Soils, 49: 691-703.
Go to original source...
- DERELLE, D., COURTY, P., DAJOZ, I., DECLERCK, S., AARLE, I. M., CARMIGNAC, D. and GENET, P. 2015. Plant identity and density can influence arbuscular mycorrhizal fungi colonization, plant growth, and reproduction investment in coculture. Botany, 93(7): 405-412.
Go to original source...
- EL AYMANI, I., EL GABARDI, S., ARTIB, M., CHLIYEH, M., SELMAOUI, K., OUAZZANI TOUHAMI, A., BENKIRANE, R. and DOUIRA, A. 2019. Effect of the number of years of soil exploitation by Saffron cultivation in Morocco on the diversity of endomycorrhizal Fungi. Acta Phytopathologica et Entomologica Hungarica, 54(1): 71-86.
Go to original source...
- EVELIN, H., DEVI, T. S., GUPTA, S. and KAPOOR, R. 2019. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front. Plant Sci., 10: 470. DOI: 10.3389/fpls.2019.00470
Go to original source...
- GARMENDIA, I. and MANGAS, V. J. 2012. Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions. Span J. Agric. Res. 10(1): 166-174.
Go to original source...
- GAUR, A. and ADHOLEYA A. 2005. Diverse response of five ornemental plant species to mixed indigenous and single isolate arbuscular-mycorrizal inocula in marginal soil amended with organic matter. Journal of Plant Nutrition, 28: 707-723.
Go to original source...
- GAUR, A. and ADHOLEYA, A. 2000. Growth and flowering in Petunia hybrida, Callistephus chinensis and Impatiens balsamina inoculated with mixed AM inocula or chemical fertilizers in a soil of low P fertility. Scientia Horticulturae, 84(1-2): 151-162.
Go to original source...
- GRESTA, F., LOMBARDO, G. M., SIRACUSA, L. and RUBERTO, G. 2008. Effect of mother corm dimension and sowing time on stigma yield, daughter corms and qualitative aspects of saffron (Crocus sativus L.) in a Mediterranean environment. J. Sci. Food Agric., 88(7): 1144-1150.
Go to original source...
- HASHEM, A., ABD ALLAH, E. F., ALQARAWI, A. A., ALDUBISE, A. and EGAMBERDIEVA, D. 2015. Arbuscular mycorrhizal fungi enhances salinity tolerance of panicum turgidum forssk by altering photosynthetic and antioxidant pathways. J. Plant Interact., 10(1): 230-242. DOI: 10.1080/17429145.2015.1052025
Go to original source...
- JIN, D., LIU, P. and ZHONG, T. P. 2015. Prostaglandin signaling in ciliogenesis during development. Cell cycle, 14(1): 1-2.
Go to original source...
- KUMAR, R., SINGH, V., DEVI, K., SHARMA, M., SINGH, M. K. and AHUJA, P. S. 2009. State of art of saffron (Crocus sativus L.) agronomy: a comprehensive review. Food Rev. Int., 25(1): 44-85.
Go to original source...
- LANFRANCO, L. and YOUNG, J. P. W. 2012. Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi. Curr Opin Plant Biol, 15(4): 454-461.
Go to original source...
- LU, X. and KOIDE, R. 1994. The effects of mycorrhizal infection on components of plant growth and reproduction. New Phytol, 128(2): 211-218.
Go to original source...
- MEMECEE, 2015. Rapport de Diagnostique de l'Etat de l'Environnement au Maroc. Ministère de l'Energie, des Mines, de l'Eau et de l'Environnement.
- MOREIRA, N. F., NARCISO-DA-ROCHA, C., POLO-LOPEZ, M. I., PASTRANA-MARTINEZ, L. M., FARIA, J. L., MANAIA, C. M., FERNANDEZ-IBAÑEZ, P., NUNES, O. C. and SILVA, A. M. 2018. Solar treatment (H2O2, TiO2-P25 and GO-TiO 2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. Water Research, 135: 195-206.
Go to original source...
- MUNNS, R. and GILLIHAM, M. 2015. Salinity tolerance of crops-what is the cost? N. Phytol., 208: 668-673. DOI: 10.1111/nph.13519
Go to original source...
- NOWAK, J. 2004. Effects of arbuscular Mycorrizal Fungi and organic fertilization on growth, flowering, nutrient uptake, photosynthesis and transpiration of geranium (Pelargonium hortorum L. H. Bailey 'Tango Orange'). Symbiosis, 37(1): 259-266.
- PORCEL, R., AROCA, R. and RUIZ-LOZANO, J. M. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 32: 181-200.
Go to original source...
- PÜSCHEL, D., RYDLOVÁ, J. and VOSÁTKA, M. 2014. Can mycorrhizal inoculation stimulate the growth and flowering of peat-grown ornamental plants under standard or reduced watering? Applied Soil Ecology, 80: 93-99.
Go to original source...
- ROUPHAEL, Y., FRANKEN, P., SCHNEIDER, C., SCHWARZ, D., GIOVANNETTI, M. and AGNOLUCCI, M. 2015. Arbuscular mycorrhizal fungi act as bio-stimulants in horticultural crops. Sci. Hort., 196: 91-108.
Go to original source...
- RUIZ-LOZANO, J. M., AZCON, R. and GOMEZ, M. 1995. Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Applied and environmental microbiology, 61(2): 456-460.
Go to original source...
- SCAGEL, C. F. 2004. Changes in cutting composition during Early stages of Adentitious rooting of Miniature Rose Altered by Inoculation with Arbuscular Mycorrhizal fungi. J. Amer. Soc. Hort. Sci., 129(5): 624-634.
Go to original source...
- SEGHIERI, J., FLORET, C. H. and PONTANIER, R. 1995. Plant phenology in relation to water availability: herbaceous and woody species in the savannas of northern Cameroon. Journal of Tropical Ecology, 11(2): 237-254.
Go to original source...
- SEPASKHAH, A. R. and YARAMI, N. 2009. Interaction effects of irrigation regime and salinity on flower yield and growth of saffron. The Journal of Horticultural Science and Biotechnology, 84(2): 216-222.
Go to original source...
- SHAMSHIRI, M. H., USHA, K. and SINGH, B. 2012. Growth and nutrient uptake responses of kinnow to vesicular arbuscular mycorrhiza. International Scholarly Research Notices, 2012: ID 535846.
Go to original source...
- SOHN, B. K., KIM, K. Y., CHUNG, S. J., KIM, W. S., PARK, S. M., KANG, J. G., RIM, Y. S., CHO, J. S., KIM, T. H. and LEE, J. H. 2003. Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci. Hortic., 98: 173-183.
Go to original source...
- SONG, H. X. 2007. Species diversity of AMF and its effects on eco-physiology of dominant plant species in limestone soil. PhD Thesis. Southwestern University China.
- STEINER, J. L., SMITH, R. C. G., MCYCR, W. S. and ADENCY, J. A. 1985. J. Agric. Res. 58: 89-96.
- STRULLU, D. G., DIOP, T. A. and PLENCHETTE, C. 1997. Réalisation de collections in vitro de Glomus intraradices (Schenck et Smith) et Glomus versiforme (Karsten et Berch) et proposition d'un cycle de développement. Comptes Rendus de l'Academie des sciences, 320: 41-47.
Go to original source...
- TRIMBLE, M. R. and KNOWLES, N. R. 1995. Influence of phosphorus nutrition and vesicular-arbuscular mycorrhizal fungi on growth and yield of greenhouse cucumber (Cucumis sativus L.). Can J Plant Sci, 75: 251-259.
Go to original source...
- TÜRKMEN, M., TÜRKMEN, A., YALÇIN, T., ATEŞ, A. and GÖKKUŞ, K. 2008. Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: Twelve fish species. Food Chemistry, 108(2): 794-800.
Go to original source...
- TURNER, N. C. 1986. Adaptation to water deficits: A changing perspective. Austral. J. Plant Physiol., 13: 175-190.
Go to original source...
- VAINGANKAR, J. and RODRIGUES, B. 2014. Effect of arbuscular mycorrhizal (AM) inoculation on growth and flowering in Crossandra infundibuliformis (L.) Nees. Journal Plant Nutrition, 38: 1478-1488.
Go to original source...
- VAN DER HEIJDEN, M. G. A., KLIRONOMOS, J. N., URSIC, M., MOUTOGLIS, P., STREITWOLF-ENGEL, R., BOLLER, T., WIEMKEN, A. and SANDERS, L. R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variabilityand productivity. Nature, 396: 72-75.
Go to original source...
- VOGELSANG, K. M., REYNOLDS, H. L. and BEVER, J. D. 2006. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New phytologist, 172: 554-562.
Go to original source...
- VOSNJAK, M., LIKAR, M. and OSTERC, G. 2021. The effect of mycorrhizal inoculum and phosphorus treatment on growth and Flowering of Ajania (Ajaniapacifica (Nakai) Bremer et Humphries) Plant. Horticulturae, 7(7): 178.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.