Acta Univ. Agric. Silvic. Mendelianae Brun. 2023, 71(1), 7-13 | DOI: 10.11118/actaun.2023.001

Zooplankton Biomass in Ponds - Determination of Biovolume and Dry Weight

Radovan Kopp1, Marija Radojičić1, Michal ©orf1
1 Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

The aim of this study was to evaluate the possibility of using simple screening methods to determine zooplankton biomass in ponds. Among the applicable methods, we selected sedimentation determination of wet biomass and dry biomass determination. Of the 369 samples analysed, the median volumetric zooplankton biomass was 0.012 ml.l-1 and the median dry weight of the samples was 0.44 mg.l-1. There was a relatively close relationship between the volumetric biomass determination and the zooplankton dry weight determination, allowing only one of these methods to be used. Due to the variation of results over a wide range of values, it is more appropriate to use a logarithmic expression for the correlation. No statistically conclusive relationship was found between the zooplankton biomass determined and any of the other physico-chemical or production parameters. Nevertheless, it was possible to trace the influence of fish production, altitude and nutrient content (nitrogen and phosphorus) on the size of zooplankton biomass. The use of screening determination methods can be recommended especially for long-term monitoring of sites to get a quick overview of zooplankton biomass in ponds.

It is clear from the above data that predicting the development of the zooplankton community in ponds is highly problematic. Standard determination of zooplankton biomass at regular intervals during the growing season is usually not realistic outside scientific studies due to its technical and time-consuming nature. Therefore, for long-term monitoring of the zooplankton community at a given site, it is advisable to use relatively quick and inexpensive methods of determining zooplankton biomass, such as bulk biomass or dry weight. Although these methods do not give a detailed picture of the species structure of zooplankton, they do give information on the size of the total zooplankton biomass. Together with the determination of basic physico-chemical parameters and especially chlorophyll-a, a fairly good inference can then be made on the development of plankton communities.

Keywords: zooplankton, volumetric zooplankton biomass, fishpond, screening methods

Received: December 14, 2022; Revised: December 26, 2022; Accepted: January 6, 2023; Published: March 1, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kopp, R., Radojičić, M., & ©orf, M. (2023). Zooplankton Biomass in Ponds - Determination of Biovolume and Dry Weight. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis71(1), 7-13. doi: 10.11118/actaun.2023.001
Download citation

References

  1. ALIMOV, A. F. 2010. Changes in the Structure of Animal Communities Accompanying Eutrophication and Pollution of Aquatic Ecosystems. Doklady Biological Sciences, 433(2): 249-251. DOI: 10.1134/S0012496610040046 Go to original source...
  2. AUBAKIROVA, M., KRUPA, E., MAZHIBAYEVA, Z., ISBEKOV, K. and ASSYLBEKOVA, S. 2021. The Role of External Factors in the Variability of the Structure of the Zooplankton Community of Small Lakes (South-East Kazakhstan). Water, 13(7): 962. DOI: https://doi.org/10.3390/w13070962 Go to original source...
  3. BAYER, E. and BAJKOV, A. 1929. Hydrobiological studies of Lednice ponds. I. Investigation of heleoplankton and its quantitative ratios [in Czech: Hydrobiologická studia rybníků lednických. I. Výzkum heleoplanktonu a jeho poměrů quantitativních]. Sbor. V©Z Brno, (D)14, 1-165.
  4. BOWEN, K. L. 2017. Methods for the Determination of Zooplankton Density, Biomass and Secondary Production. Canadian Manuscript Report of Fisheries and Aquatic Sciences 3119. Great Lakes Laboratory for Fisheries and Aquatic Sciences, Central and Arctic Region, Fisheries and Oceans Canada
  5. CULVER, D. A., BOUCHERLE, M. M., BEAN, D. J. and FLETCHER, J. W. 1985. Biomass of freshwater crustacean zooplankton from length - weight regressions. Canadian Journal of Fisheries and Aquatic Sciences, 42(8): 1380-1390. DOI: https://doi.org/10.1139/f85-173 Go to original source...
  6. DE BERNARDI, R. 1984. Methods for the estimation of zooplankton abundance. In: DOWNING, J. A. and RIGLER, F. H. (Eds.). A manual for the assessment of secondary productivity in fresh waters. IBP Handbook 17. Oxford, London, Edinburgh, Boston, Melbourne Blackwell: Scientific Publications., pp. 59-86.
  7. DUMONT, H. J. and VAN DE VELDE, I. 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 19(1): 75-97. Go to original source...
  8. FOTT, J., PECHAR, L. and PRA®ÁKOVÁ, M. 1980. Fish as a factor controlling water quality in ponds. In: BARICA, J. and MUR, L. R. (Eds.) Hypertrophic Ecosystems. Developments in Hydrobiology 2, pp. 255-261. Go to original source...
  9. KARMAKAR, S. R., HOSSAIN, M. B., SARKER, M. M., NUR, A.-A. U., HABIB, A., PARAY, B. A., AL-SADOON, M. K., GULNAZ, A. and ARAI, T. 2022. Diversity and Community Structure of Zooplankton in Homestead Ponds of a Tropical Coastal Area. Diversity, 14(9): 755. DOI: https://doi.org/10.3390/d14090755 Go to original source...
  10. MCCAULEY, E. 1984. Chapter 7. The estimation of the abundance and biomass of zooplankton in samples. In: DOWNING, J. A. and RIGLER, F. H. (Eds.). A manual on methods for the assessment of secondary production in fresh waters. 2nd Edition. IBP Handbook 17. Blackwell Scientific Publications.
  11. MOORE, V. M., FOLT, C. L. and STEMBERGER, R. S. 1996. Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Archiv fur Hydrobiologie, 135(3): 289-319. DOI: https://doi.org/10.1127/archiv-hydrobiol/135/1996/289 Go to original source...
  12. MOREIRA, R. A., ROCHA, O., DOS SANTOS, R. M., DIAS, E. S., MOREIRA, F. W. A. and ENEIDA M. E. A. 2016. Composition, body-size structure and biomass of zooplankton in a high-elevation temporary pond (Minas Gerais, Brazil). Oecologia Australis, 20(2): 219-231. DOI: https://doi.org/10.4257/oeco.2016.2002.06 Go to original source...
  13. PECHAR, L. 1995. Long-term changes in fish pond management as an unplanned ecosystem experimentʹ: Importance of zooplankton structure, nutrients and light for species composition of cyanobacterial blooms. Water Science and Technology, 32(4), 187-196. DOI: https://doi.org/10.1016/0273-1223(95)00698-2 Go to original source...
  14. POSTEL, L., FOCK, H. and HAGEN, W. 2000. Biomass and abundance. In: HARRIS, H. R. HARRIS, R., WIEBE, P., LENZ, J., SKJOLDAL, H. R. and HUNTLEY, M. (Eds.). ICES Zooplankton Methodology Manual. San Diego: Academic Press. 632 pp. Go to original source...
  15. POTUZAK, J., HUDA, J. and PECHAR, L. 2007. Changes in fish production effectivity in eutrophic fishponds - impact of zooplankton structure. Aquaculture International, 15(3-4): 201-210. DOI: https://doi.org/10.1007/s10499-007-9085-2 Go to original source...
  16. PŘIKRYL, I. 2006. Methodology for the collection and processing of zooplankton samples from standing waters [in Czech: Metodika odběru a zpracování vzorků zooplanktonu stojatých vod]. VÚV TGM, 14 pp.
  17. SHURIN, J. B., CLASEN, J. L., GREIG, H. S., KRATINA, P. and THOMPSON, P. L. 2012. Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society B, 367(1605): 3008-3017. DOI: https://doi.org/10.1098/rstb.2012.0243 Go to original source...
  18. STEEDMAN, H. F. (Ed.). 1976. Zooplankton fixation and preservation. Paris, France: The Unesco Press, 350 pp.
  19. WILLIAMS, A. E. and MOSS, B. 2003. Effects of different fish species and biomass on plankton interactions in a shallow lake. Hydrobiologia, 491: 331-346. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.