Acta Univ. Agric. Silvic. Mendelianae Brun. 2022, 70(6), 349-353 | DOI: 10.11118/actaun.2022.025

In Vitro Antimicrobial Activity of Phosphate-Based Zinc Nanoparticles

Daria Baholet1, Sylvie Skalickova1, Tomas Kopec2, Pavel Horky1
1 Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
2 Department of Animal Breeding, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

In recent years, zinc nanoparticles have captivated an attention due to their antimicrobial properties. Moreover, the advantage of nanomaterials is an ability to modify their chemical composition and influence their antibacterial properties. In this study, zinc-phosphate nanoparticles (ZnNPs) were prepared via chemical route of synthesis. Their antibacterial activity was evaluated by monitoring a bacterial growth of model microorganisms: gram-negative (G-) E. coli, and gram-positive (G+) S. aureus as well as methicillin-resistant S. aureus (MRSA). Obtained results have shown, the ZnNPs are the most effective against G+ S. aureus compared to MRSA or G- E. coli. The inhibition concentrations for S. aureus, E. coli and MRSA was 0.16, 1.25, 2.5 mM, respectively. To conclude, ZnNPs exhibit antibacterial activity against both G+ and G- model microorganisms, however, G- bacteria are more sensitive against ZnNPs.

Keywords: animal nutrition, zinc, nanomaterials, antimicrobials

Received: August 23, 2022; Revised: August 31, 2022; Accepted: October 24, 2022; Published: January 1, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Baholet, D., Skalickova, S., Kopec, T., & Horky, P. (2022). In Vitro Antimicrobial Activity of Phosphate-Based Zinc Nanoparticles. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis70(6), 349-353. doi: 10.11118/actaun.2022.025
Download citation

References

  1. AHGHARI, M. R., SOLTANINEJAD, V. and MALEKI, A. 2020. Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities. Sci. Rep., 10: 12627. DOI: https://doi.org/10.1038/s41598-020-69679-4 Go to original source...
  2. ALVAREZ, C.-S., GIMÉNEZ, R., CAÑAS, M.-A., VERA, R., DÍAZ-GARRIDO, N., BADIA, J. and BALDOMÀ, L. 2019. Extracellular vesicles and soluble factors secreted by Escherichia coli Nissle 1917 and ECOR63 protect against enteropathogenic E. coli-induced intestinal epithelial barrier dysfunction. BMC Microbiology, 19: 166. DOI: https://doi.org/10.1186/s12866-019-1534-3 Go to original source...
  3. BAHOLET, D., SKALICKOVA, S., BATIK, A., MALYUGINA, S., SKLADANKA, J. and HORKY, P. 2022. Importance of Zinc Nanoparticles for the Intestinal Microbiome of Weaned Piglets. Frontiers in Veterinary Science, 9: 852085. DOI: https://doi.org/10.3389/fvets.2022.852085 Go to original source...
  4. BAYDA, S., ADEEL, M., TUCCINARDI, T., CORDANI, M. and RIZZOLIO, F. 2020. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules, 25(1): 112. DOI: https://doi.org/10.3390/molecules25010112 Go to original source...
  5. EUROPEAN COMMISSION. 2003. Opinion of the Scientific Committee for Animal Nutrition on the use of zinc in feedingstuffs. Adopted 14 March 2003. Brussels: EC Health and Consumer Protection Directorate General. Available at: https://ec.europa.eu/food/fs/sc/scan/out120_en.pdf [Accessed: 2022, November 15].
  6. HONG, S., CHOI, D. W., KIM, H. N., PARK, C. G., LEE, W. and PARK, H. H. 2020. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics, 12(7): 604. DOI: https://doi.org/10.3390/pharmaceutics12070604 Go to original source...
  7. HORKY, P., SKALICKOVA, S., URBANKOVA, L., BAHOLET, D., KOCIOVA, S., BYTESNIKOVA, Z., KABOURKOVA, E., LACKOVA, Z., CERNEI, N., GAGIC, M., MILOSAVLJEVIC, V., SMOLIKOVA, V., VACLAVKOVA, E., NEVRKLA, P., KNOT, P., KRYSTOFOVA, O., HYNEK, D., KOPEL, P., SKLADANKA, J., ADAM, V. and SMERKOVA, K. 2019. Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure. Journal of Animal Science and Biotechnology, 10: 17. DOI: https://doi.org/10.1186/s40104-019-0319-8 Go to original source...
  8. KHAN, I., SAEED, K. and KHAN, I. 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7): 908-931. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011 Go to original source...
  9. LALLO DA SILVA, B., CAETANO, B. L., CHIARI-ANDRÉO, B. G., PIETRO, R. C. L. R. and CHIAVACCI, L. A. 2019. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids Surf. B: Biointerfaces, 177: 440-447. DOI: https://doi.org/10.1016/j.colsurfb.2019.02.013 Go to original source...
  10. LICHTEN, L. A. and COUSINS, R. J. 2009. Mammalian Zinc Transporters: Nutritional and Physiologic Regulation. Annual Review of Nutrition, 29: 153-176. DOI: https://doi.org/10.1146/annurev-nutr-033009-083312 Go to original source...
  11. MALAGURSKI, I., LEVIC, S., NESIC, A., MITRIC, M., PAVLOVIC, V. and DIMITRIJEVIC-BRANKOVIC, S. 2017. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties. Carbohydr Polym, 175: 55-62. DOI: https://doi.org/10.1016/j.carbpol.2017.07.064 Go to original source...
  12. PEREIRA, A. M., MAIA, M. R. G., FONSECA, A. J. M. and CABRITA, A. R. J. 2021. Zinc in Dog Nutrition, Health and Disease: A Review. Animals, 11(4): 978. DOI: https://doi.org/10.3390/ani11040978 Go to original source...
  13. SIDDIQI, K. S., UR RAHMAN, A., TAJUDDIN and HUSEN, A. 2018. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Research Letters 13, 141. https://doi.org/10.1186/s11671-018-2532-3 Go to original source...
  14. SINGH, R., CHENG, S. and SINGH, S. 2020. Oxidative stress-mediated genotoxic effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech, 10: 66. DOI: https://doi.org/10.1007/s13205-020-2054-4 Go to original source...
  15. SIRELKHATIM, A., MAHMUD, S., SEENI, A., KAUS, N. H. M., ANN, L. C., BAKHORI, S. K. M., HASAN, H. and MOHAMAD, D. 2015. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett., 7: 219-242. DOI: https://doi.org/10.1007/s40820-015-0040-x Go to original source...
  16. VAHEDI, M., HOSSEINI-JAZANI, N., YOUSEFI, S. and GHAHREMANI, M. 2017. Evaluation of anti-bacterial effects of nickel nanoparticles on biofilm production by Staphylococcus epidermidis. Iran J Microbiol., 9(3): 160-168.
  17. VILLAGÓMEZ-ESTRADA, S., PÉREZ, J. F., VAN KUIJK, S., MELO-DURÁN, D., KARIMIRAD, R. and SOLÀ-ORIOL, D. 2021. Effects of two zinc supplementation levels and two zinc and copper sources with different solubility characteristics on the growth performance, carcass characteristics and digestibility of growing-finishing pigs. Journal of Animal Physiology and Animal Nutrition, 105(1): 59-71. DOI: https://doi.org/10.1111/jpn.13447 Go to original source...
  18. YADAV, P., MEENA, R. and JOSHI, B. S. 2021. Synthesis, Spectroscopic Characterization, And Antimicrobial Studies Of Some N/O Donar Ligand Complexes Of Sn(Iv) Derived From Isatino-3- Benzhydrazone. RJC, 14(2): 1240-1246. DOI: https://doi.org/10.31788/RJC.2021.1426168 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.