Acta Univ. Agric. Silvic. Mendelianae Brun. 2022, 70(4-5), 317-335 | DOI: 10.11118/actaun.2022.024

Nutrient Balance from Agricultural Pollution Sources on Selected Tributaries to the Švihov Reservoir

Petra Oppeltová1, Tomáš Kvítek2, Pavel Kasal3
1 Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
2 Department of Applied Ecology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Branišovská 1645/31A, České Budějovice 2, 370 05 České Budějovice, Czech Republic
3 Potato Research Institute Havlíčkův Brod, Ltd., Dobrovského 2366, 580 01 Havlíčkův Brod, Czech Republic

Agriculture is the leading source of non-point sources of water pollution, especially in terms of the runoff process. Agricultural management promotes extensive water contamination, soil erosion and sedimentation in streams and reservoirs. The water reservoir Švihov on the Želivka river supplies drinking water to more than 1.5 million people. The catchment area of the water supply reservoir is intensively used for agriculture, more than 55% of the catchment area is arable land. Nutrients such as phosphorus and nitrates in the upper water-ways of tributaries are a huge problem. The aim of the research is to evaluate concentration trends and losses of nutrients (nitrates and phosphorus) at the chosen tributaries to the Švihov reservoir during 2018-2021. From the data on monthly concentrations and monthly discharges the monthly and annual losses of nitrates and phosphorus on each profile were calculated. The effect of discharges and concentrations on the magnitude of losses was investigated by correlation analysis. The influence of the forebay Trnávka dam on the magnitude of nutrient losses was also evaluated. The results show the importance of discharge magnitude on nutrient losses. The Trnávka forebay dam significantly reduces the transport of phosphorus from the Trnava catchment to the Švihov reservoir. In the catchment area of the reservoir it is recommended to implement nature-friendly and technical measures for water retention and accumulation in the landscape in order to reduce nutrient transport.

Keywords: phosphorus, nitrates, discharge, losses, agriculture, non-point sources, water retention

Received: September 18, 2022; Revised: September 24, 2022; Accepted: September 26, 2022; Published: November 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Oppeltová, P., Kvítek, T., & Kasal, P. (2022). Nutrient Balance from Agricultural Pollution Sources on Selected Tributaries to the Švihov Reservoir. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis70(4-5), 317-335. doi: 10.11118/actaun.2022.024
Download citation

References

  1. Amery, F. and Schoumans, O. F. 2014. Agricultural phosphorus legislation in Europe. Merelbeke: ILVO.
  2. Biernat, L., Taube, F., Vogeler, I., Reinsch, T., Kluß, C. and Loges, R. 2020. Is organic agriculture in line with the EU-Nitrate directive? On-farm nitrate leaching from organic and conventional arable crop rotations. Agriculture, Ecosystems & Environment, 298: 106964. DOI: https://doi.org/10.1016/j.agee.2020.106964 Go to original source...
  3. Bol, R., Gruau, G., Mellander, P.-E., Dupas, R., Bechmann, M., Skarbøvik, E., Bieroza, M., Djodjic, F., Glendell, M., Jordan, P., Van der Grift, B., Rode, M., Smolders, E., Verbeeck, M., Gu, S., Klumpp, E., Pohle, I., Fresne, M. and Gascuel-Odoux, C. 2018. Challenges of Reducing Phosphorus Based Water Eutrophication in the Agricultural Landscapes of Northwest Europe. Frontiers in Marine Science, 5(276): 1-16. DOI: 10.3389/fmars.2018.00276 Go to original source...
  4. Cremona, F., Tuvikene, L., Haberman, J., Noges, P. and Noges, T. 2018. Factors controlling the three-decade long rise in cyanobacteria biomass in a eutrophic shallow lake. Sci. Total Environ, 621: 352-359. DOI: doi.org/10.1016/j.scitotenv.2017.11.250 Go to original source...
  5. Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B. and Smith, J. E. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12): 1135-1142. Go to original source...
  6. Eugercios Silva, A., Álvarez-Cobelas, M. and Montero González, E. 2017. Impactos del nitrógeno agrícola en los ecosistemas acuáticos. Ecosistemas, 26(1): 37-44. DOI: 10.7818/ECOS.2017.26-1.06 Go to original source...
  7. EUROPEAN PARLIAMENT; COUNCIL OF EUROPEAN UNION COUNCIL. 1991. Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. ELI: http://data.europa.eu/eli/dir/1991/676/oj
  8. Fiala, D. 2016. Struggle for phosphorus, or are all water managers working at full capacity? [in Czech: Boj o fosfor, aneb pracují všichni vodohospodáři na plný výkon?]. Vodní hospodářství, 66(5). Available at: https://vodnihospodarstvi.cz/boj-o-fosfor/ [Accessed: 2022, August 15].
  9. Fučík, P. et al. 2016. Farming and environmental protection - as seen by farmers [in Czech: Zemědělské hospodaření a ochrana životního prostředí - jak to vidí zemědělci]. Vodní hospodářství, 66(9): 1-5. Available at: https://www.vodnihospodarstvi.cz/ArchivPDF/vh2016/vh_09-2016.pdf [Accessed: 2022, August 15].
  10. Fučík, P., Kaplická, M. and Zajíček, A. 2009. Diffuse Sources of Phosphorus in Agricultural Catchment of Small Water Courses [in Czech: Difúzní zdroje fosforu v zemědělských povodích drobných vodních toků]. In: Nutrient Pollution of Surface: Causes, Impacts and Options for Solution of (eu)trophication [in Czech: Znečištění povrchových vod živinami: příčiny, důsledky a možnosti řešení (eu)trofizace]. Conference Proceedings. Prague, Novotného lávka, June 11, 2009. Prague: Czech Association of Scientific and Technical Societies. ISBN 978-80-02-02154-4
  11. Genea, S. M. et al. 2019. The role of vegetated buffers in agriculture and their regulation across Canada and the United States. Journal of Environmental Management, 243: 12-21. DOI: org/10.1016/j.jenvman.2019.05.003 Go to original source...
  12. Gil-Izquierdo, A., Pedreño, M. A., Montoro-García, S., Tárraga-Martínez, M., Iglesias, P., Ferreres, F., Barceló, D., Núñez-Delicado, E. and Gabaldón, J. A. 2021. A sustainable approach by using microalgae to minimize the eutrophication process of Mar Menor lagoon. Science of The Total Environment, 758: 143613. DOI: https://doi.org/10.1016/j.scitotenv.2020.143613 Go to original source...
  13. Glavan, M., Bele, S., Curk, M. and Pintar, M. 2020. Modelling Impacts of a Municipal Spatial Plan of Land-Use Changes on Surface Water Quality - Example from Goriška Brda in Slovenia. Water, 12(1): 189. DOI: https://doi.org/10.3390/w12010189 Go to original source...
  14. Hanrahan, B. R., Tank, J. L., Speir, S. L., Trentman, M. T., Christopher, S. F., Mahl, U. H. and Royer, T. V. 2021. Extending vegetative cover with cover crops influenced phosphorus loss from an agricultural watershed. Science of The Total Environment, 801: 149501. DOI: https://doi.org/10.1016/j.scitotenv.2021.149501 Go to original source...
  15. Heinz, I. 2008. Co-operative agreements and the EU Water Framework Directive in conjunction with the Common Agricultural Policy. Hydrology and Earth System Sciences, 12(3): 715-726. Go to original source...
  16. Holden, J. et al. 2017. Water quality and UK agriculture: challenges and opportunities. WIREs Water, 4(2): e1201. DOI: 10.1002/wat2.1201 Go to original source...
  17. Iho, A. and Laukkanen, M. 2012. Precision phosphorus management and agricultural phosphorus loading. Ecological Economics, 77: 91-102. DOI: 10.1016/j.ecolecon.2012.02.010 Go to original source...
  18. Johnson, H. M. and Stets, E. G. 2020. Nitrate in streams during winter low-flow conditions as an indicator of legacy nitrate. Water Resources Research, 56(11), e2019WR026996. DOI: https://doi.org/10.1029/2019WR026996 Go to original source...
  19. Jossette, G., Leporcq, B., Sanchez, N. et al. 1999. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine basin (France). Biogeochemistry, 47(2): 119-146. DOI: https://doi.org/10.1007/BF00994919 Go to original source...
  20. Kalcic, M., Prokopy, L., Frankenberger, J. and Chaubey, I. 2014. An In-depth Examination of Farmers' Perceptions of Targeting Conservation Practices. Environmental Management, 54(4): 795-813. Go to original source...
  21. Kalinowska, D., Wielgat, P., Kolerski, T. and Zima, P. 2020. Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea). Water, 12(3): 809. DOI: https://doi.org/10.3390/w12030809 Go to original source...
  22. Klír, J. and Kozlovská, L. 2016. Water protection management against pollution caused by nitrates - certified methodology for practice [in Czech: Zásady hospodaření pro ochranu vod před znečištěním dusičnany - certifikovaná metodika pro praxi]. Praha - Ruzyně: Výzkumný ústav rostlinné výroby, v.v.i. Available at: https://invenio.nusl.cz/record/317266/files/nusl-317266_1.pdf [Accessed: 2022, August 15].
  23. Konečná, J. et al. 2018. Principles of Approach to Optimization of Water and Soil Protection in the Svratka River Sub-Basins [in Czech: Principy přístupu k řešení optimalizace ochrany vody a půdy v subpovodích řeky Svratky]. Vodohospodářské technicko-ekonomické informace (VTEI), 2: 14-23. Go to original source...
  24. Krása, J. et al. 2013. Evaluation of the risk of water reservoirs of sediment and eutrophication due to erosion of agricultural land [in Czech: Hodnocení ohroženosti vodních nádrží sedimentem a eutrofizací podmíněnou erozí zemědělské půdy]. Certified methodology for practice. Available at: https://storm.fsv.cvut.cz/data/files/Volne_stazitelne_vysledky/medodiky_atp/metodika_nadrze_2013.pdf [Accessed: 2022, August 15].
  25. Kronvang, B., Larsen, S. E., Jensen, J. P, Andersen, H. E. and Hejzlar, J. 2005. Eurohap 17 Catchment report: Zelivka, Czech Republic, trend analysis, retention and source apportionment. EUR. NIVA-rapport;5086. EUROHARP;17. HDL: http://hdl.handle.net/11250/212958
  26. Kvítek, T. (ed). 2017. Retention and Quality of Water in Catchment of Švihov Water Supply Reservoir on the Želivka River [in Czech: Retence a jakost vody v povodí vodárenské nádrže Švihov na Želivce]. Praha, Czech Republic: Povodí Vltavy, state enterprise. ISBN 978-80-270-2488-9
  27. Kvítek, T., Žlábek, P., Bystřický, V., Fučík, P., Lexa, M., Gergel, J., Novák, P. and Ondr, P. 2009. Changes of nitrate concentrations in surface waters influenced by land use in the crystalline complex of the Czech Republic. Physics and Chemistry of the Earth, Parts A/B/C, 34(8-9): 541-551. DOI: https://doi.org/10.1016/j.pce.2008.07.003 Go to original source...
  28. Lawniczak, A. E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A., Kanas, K. 2016. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environmental Monitoring and Assessment, 188(3): 172. DOI: 10.1007/s10661-016-5167-9 Go to original source...
  29. Lazicki, P. and Geisseler, D. 2017. Soil nitrate testing supports nitrogen management in irrigated annual crops. California Agriculture, 71(2): 90-95. DOI: 10.3733/ca.2016a0027 Go to original source...
  30. Liška, M., Soukupová, K., Dobiáš, J., Metelková, A., Goldbach, J. and Kvítek, T. 2016. Water quality in drinking water reservoir Švihov on Želivka river and its river basin, with focus on specifics organics compounds [in Czech: Jakost vody ve vodárenské nádrži Švihov na Želivce a jejím povodí se zaměřením na specifické organické látky]. Vodohospodářské technicko-ekonomické informace (VTEI), 3: 4-11. Available at: https://www.vtei.cz/wp-content/uploads/2015/08/5542-VTEI-cislo-3-16.pdf [Accessed: 2022, August 15]. Go to original source...
  31. Loague, K. and Corwin, D. L. 2006. Point and NonPoint Source Pollution. In: ANDERSON, M. G. and MCDONNELL, J. J. (Eds.). Encyclopedia of Hydrological Sciences. John Wiley & Sons. DOI: https://doi.org/10.1002/0470848944.hsa097 Go to original source...
  32. Long, T., Wellen, C., Arhonditsis, G., Boyd, D., Mohamed, M. and O'Connor, K. 2015. Estimation of tributary total phosphorus loads to Hamilton Harbour, Ontario, Canada, using a series of regression equations. Journal of Great Lakes Research, 41(3): 780-793. DOI: 10.1016/j.jglr.2015.04.001 Go to original source...
  33. Maavara, T., Parsons, C. T., Ridenour, C., Stojanovic, S., Dürr, H. H., Powley, H. R. and VAN Cappellen, P. 2015. Global phosphorus retention by river damming. PNAS, 112(51): 15603-15608. DOI: https://doi.org/10.1073/pnas.1511797112 Go to original source...
  34. Maccoux, M. J., Dove, A., Backus, S. M. and Dolan, D. M. 2016. Total and soluble reactive phosphorus loadings to Lake Erie: a detailed accounting by year, basin, country, and tributary. Journal of Great Lakes Research, 42(6): 1151-1165. DOI: 10.1016/j.jglr.2016.08.005 Go to original source...
  35. Mamun, A. A., Shams, S. and Nuruzzaman, M. 2020. Review on uncertainty of the first-flush phenomenon in diffuse pollution control. Applied Water Science, 10(1): 53. DOI: https://doi.org/10.1007/s13201-019-1127-1 Go to original source...
  36. Martínez Fernández, J., Fitz, C., Esteve Selma, M. A., Guaita, N. and Martínez-López, J. 2013. Modelling the effects of land use change on the nutrient dynamics in a coastal agriculture watershead: the case of Mar Menor (southeast Spain) [in Spanish: Modelización del efecto de los cambios de uso del suelo sobre los flujos de nutrientes en cuencas agrícolas costeras: el caso del Mar Menor (Sudeste de España)]. Ecosistemas, 22(3): 84-94. DOI: 10.7818/ECOS.2013.22-3.12 Go to original source...
  37. Martínková, M., Hejduk, T., Fučík, P. et al. 2018. Assessment of runoff nitrogen load reduction measures for agricultural catchments. Open Geosciences, 10(1): 403-412. DOI: 10.1515/geo-2018-0032 Go to original source...
  38. Millier, H. K. G. R. and Hooda, P. S. 2011. Phosphorus species and fractionation - Why sewage derived phosphorus is a problem. Journal of Environmental Management, 92(4): 1210-1214. DOI: https://doi.org/10.1016/j.jenvman.2010.12.012 Go to original source...
  39. Neal, C., Jarvie, H. P., Neal, M., Love, A. J., Hill, L. and Wicham, H. 2005. Water quality of treated sewage effluent in a rural area of the upper Thames Basin, southern England, and the impacts of such effluents on riverine phosphorus concentrations. Journal of Hydrology, 304(1-4): 103-117. Go to original source...
  40. Nemčić-Jurec, J. and Jazbec, A. 2017. Point source pollution and variability of nitrate concentrations in water from shallow aquifers. Applied Water Science, 7: 1337-1348. DOI: https://doi.org/10.1007/s13201-015-0369-9 Go to original source...
  41. Obermanna, M., Rosenwinkel, K. and Tournoud, M. 2009. Investigation of first flushes in a medium-sized mediterranean catchment. Journal of Hydrology, 373(3): 405-415. Go to original source...
  42. Oppeltová, P., Kasal, P., Krátký, F. and Hajšlová, J. 2021. Analysis of Selected Water Quality Indicators from Runoff during Potato Cultivation after Natural Precipitation. Agriculture, 11(12), 1220. DOI: https://doi.org/10.3390/agriculture11121220 Go to original source...
  43. Pitter, P. 2009. Hydrochemistry [in Czech: Hydrochemie]. 4th Edition. Praha: VŠCHT Praha. ISBN 978-80-7080-701-9
  44. Prosser, R. S., Hoekstra, P. F., Gene, S., Truman, C., White, M. and Hanson, M. L. 2020. A review of the effectiveness of vegetated buffers to mitigate pesticide and nutrient transport into surface waters from agricultural areas. Journal of Environmental Management, 261: 110210. DOI: https://doi.org/10.1016/j.jenvman.2020.110210 Go to original source...
  45. Ramler, D., Stutter, M., Weigelhofer, G., Quinton, J. N., Hood-Nowotny, R. and Strauss, P. 2020. Keeping Up with Phosphorus Dynamics: Overdue Conceptual Changes in Vegetative Filter Strip Research and Management. Frontiers in Environmental Science, 10: 764333. DOI: https://doi.org/10.3389/fenvs.2022.764333 Go to original source...
  46. Ribaudo, M. and Johansson, M. 2020. Water Quality: Impacts of agriculture. In: ERTUÐ, K. and MIRZA, I. (Eds.). Water quality: Physical, Chemical & Biological Characteristics. Nova Science Pulishers. ISBN 978-1-60741-633-3
  47. Robertson, D. M. and Saad, D. A. 2011. Nutrient inputs to the Laurentian Great Lakes by source and watershed estimated using SPARROW watershed models. Journal of the American Water Resources Association, 47(5): 1011-1033. DOI: 10.1111/j.1752-1688.2011.00574.x Go to original source...
  48. Ross, C. A., Moslenko, L. L., Biagi, K. M., Oswald, C. J., Wellen, C. C., Thomas, J. L., Raby, M. and Sorichetti, R. J. 2022. Total and dissolved phosphorus losses from agricultural headwater streams during extreme runoff events. Science of The Total Environment, 848: 157736. DOI: https://doi.org/10.1016/j.scitotenv.2022.157736 Go to original source...
  49. Sittig, S., Sur, R., Baets, D. et al. 2020. Consideration of risk management practices in regulatory risk assessments: evaluation of field trials with micro-dams to reduce pesticide transport via surface runoff and soil erosion. Environmental Sciences Europe, 32: 86. DOI: 10.1186/s12302-020-00362-1 Go to original source...
  50. Staccione, A., Broccoli, D., Mazzoli, P., Bagli, S. and Mysiak, J. 2021. Natural water retention ponds for water management in agriculture: A potential scenario in Northern Italy. Journal of environmental management, 292: 112849. DOI: https://doi.org/10.1016/j.jenvman.2021.112849 Go to original source...
  51. Vejchar, D., Vacek, J., Hájek, D., Bradna, J., Kasal, P. and Svobodová, A. 2019. Reduction of surface runoff on sloped agricultural land in potato cultivation in de-stoned soil. Plant, Soil and Environment, 65: 118-124. DOI: https://doi.org/10.17221/736/2018-PSE Go to original source...
  52. Warner, W., Zeman-Kuhnert, S., Heim, C., Nachtigall, S. and Licha, T. 2021. Seasonal and spatial dynamics of selected pesticides and nutrients in a small lake catchment - Implications for agile monitoring strategies. Chemosphere, 281: 130736. DOI: https://doi.org/10.1016/j.chemosphere.2021.130736 Go to original source...
  53. WORLD HEALTH ORGANIZATION. 2003. Nitrate and Nitrite in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality. Geneva, Switzerland: WHO.
  54. Zajíček, A., Fučík, P., Kaplická, M., Liška, M., Maxová, J. and Dobiáš, J. 2018. Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions - the role of runoff components. Water Sci Technol, 77(7): 1879-1890. DOI: https://doi.org/10.2166/wst.2018.068 Go to original source...
  55. Zajíček, A., Kvítek, T., Duffková, R. and Tachecí, P. 2013. The effect of land use in the infiltration area on the drainage runoff quantity [in Czech: Vliv využití půdy ve zdrojové oblasti na velikost drenážního odtoku]. Vodní hospodářství, 63(8): 274-278. Available at: https://www.vodnihospodarstvi.cz/ArchivPDF/vh2013/vh08-2013.pdf [Accessed: 2022, August 15].

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.