Acta Univ. Agric. Silvic. Mendelianae Brun. 2022, 70(3), 249-259 | DOI: 10.11118/actaun.2022.019

Impact Of Inoculation by Native Endomycorrhizal Fungi Associated with Tetraclinis Articulata on Plant Growth and Mycorrhizal Diversity in the Forest Nursery

Amal El Khaddari1, 2, Amina El Ouazzani Touhami1, Soumaya El Gabardi1, Jalila Aoujdad2, Mohammed Ouajdi2, Benaissa Kerdouh2, Salwa El Antry2, Allal Douira1, Jamila Dahmani1
1 Plant, Animal and Agro-industry Production Laboratory, Department of Biology, Faculty of Sciences, Ibn Tofail University, BP 133, 14000, Kenitra
2 Forest Research Center, Water, and Forests Department, Avenue Omar Ibn El Khattab, BP 763, Rabat-Agdal, 10050, Morocco

In Morocco, Tetraclinis articulata is one of the species of great socio-economic value. Improving the resistance and survival of thuya to sometimes extreme environmental conditions is a concern of managers. For this, the use of arbuscular mycorrhizal fungi can promote the good growth of this species. We aim to study the effect of a native endomycorrhizal inoculum on the growth of T. articulata plants under nursery conditions. Our results showed that after eighteen months of inoculation, there was a significant effect on the growth of the mycorrhizal plants as compared to the non-mycorrhizal plants. Concerning the root fresh weight (8.58 g), the root system length (34 cm), the collar diameter (5.44 mm), and the number of branches (27) of the mycorrhizal plants are higher than those observed in the non-mycorrhizal plants, 7.67 g, 30 cm, 4.13 mm, and 24, respectively. However, the results of the height and the fresh weight of the shoot part of the non-mycorrhizal plant are superior to those observed in the mycorrhizal plants. The number of spores formed in the rhizosphere of plants inoculated was 135/100 g of soil. And they were represented by 29 endomycorrhizal species belonging to ten different genera: Glomus (6 species), Acaulospora (8 species), Rhizophagus (3 species), Diversispora (1 species), Funneliformis (3 species), Septoglomus (2 species), Scutellospora (2 species), Claroideoglomus (1 species), Entrophospora (1 species) and Gigaspora (2 species). Diversispora versiformis is the most abundant species; its frequency of occurrence reached 30%. The results of this inoculation study highlight the importance of native endomycorrhizal fungi isolated from the rhizosphere of Aderj in increasing the root system and improving the growth of T. articulata plants.

Keywords: diversity, endomycorrhizal fungi, nursery, mycorrhizae, plant growth, Tetraclinis articulata

Received: January 18, 2022; Revised: June 19, 2022; Accepted: June 21, 2022; Published: July 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
El Khaddari, A., El Ouazzani Touhami, A., El Gabardi, S., Aoujdad, J., Ouajdi, M., Kerdouh, B., ... Dahmani, J. (2022). Impact Of Inoculation by Native Endomycorrhizal Fungi Associated with Tetraclinis Articulata on Plant Growth and Mycorrhizal Diversity in the Forest Nursery. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis70(3), 249-259. doi: 10.11118/actaun.2022.019
Download citation

References

  1. ABBAS, Y., BAKKALİ, YAKHLEF, S. E., PRİN, Y., ARAHOU, M., ABOUROUH, M. and DUPONNOİS, R. 2013. Growth and nutrition of Tetraclinis articulata (Vahl) Mast. cultivated in different rhizosphere soils collected from Tetraclinis stand. Biotechnologie Agronomie Societe Et Environnement, 17(1): 3-11.
  2. ABBAS, Y., DUCOUSSO, M., ABOUROUH, M., AZCON, R. and DUPONNOİS, R. 2006. Diversity of arbuscular mycorrhizal fungi in Tetraclinis articulata (Vahl) Masters woodlands in Morocco. Annals of Forest Science, 63(3): 285-291. Go to original source...
  3. ABBAS, Y. and DUPONNOİS, R. 2005. Rapport final du projet PRAD 03/14.
  4. ARTİB, M., GABARDİ, S., TOUATİ, J., RHİMİNİ, Y., SELMAOUİ, K., MOURİA, A., TOUHAMİ, A., BENKİRANE, R. and DOUİRA, A. 2017. Study of Arbuscular Mycorrhizal Fungi Diversity and Its Effect on Growth and Development of Citrus aurantium L. Journal of Experimental Agriculture International, 15(4): 1-12. Go to original source...
  5. BÉREAU, M., LOUİSANNA, E., DE GRANDCOURT, A. and GARBAYE, J. 2003. Symbiose mycorhizienne et nutrition minérale. Revue Forestière Française, Ecole nationale du génie rural, 55: 74-83.
  6. BETHEMFALVAY, G. J. and YODER, J. F. 1981. The Glycine-Glomus-Rhizobium symbiosis endomycorrhiza, Glomus fasciculatus, Glycine max, Rhizobium japonicum, soybean, phosphate, nodules, nodulation, endomycorrhizal fungus, endogonaceae. Physiologia Plantarum, 52(1): 141-145. Go to original source...
  7. BLACK, C. A. 1965. Methods of soil analysis. In: Agronomy part II. Vol. 9. Wisconsin, US: Am. Soc. Agron., pp. 1114-1162.
  8. B£ASZKOWSKİ, J., TADYCH, M. and MADEJ, T. 2002. Arbuscular mycorrhizal fungi (Glomales, Zygomycota) of the Bledowska desert, Poland. Acta Societatis Botanicorum Poloniae, 71(1): 71-85. Go to original source...
  9. BOUDY, P. 1952. Guide du forestier en Afrique du Nord. Paris: La maison rustique.
  10. BOUREİMA, S., DİOUF, M., DİOP, T. A., DİATTA, M., LEYE, E. M., NDİAYE, F. and SECK, D. 2008. Effects of arbuscular mycorrhizal inoculation on the growth and the development of sesame (Sesamum indicum L.). African Journal of Agricultural Research, 3(3): 234-238.
  11. BOUSSELMAME, F., KENNY, L. and ACHOURİ, M. 2002. Effet des mycorhizes à vésicules et arbuscules sur la croissance et la nutrition de l'arganier (Argania spinosa L.). Actes Inst. Agron Vet., 22(4): 193-198.
  12. BRUNDRETT, M. C., ABBOTT, L. K. and JASPER, D. A. 1999. Glomalean mycorrhizal fungi from tropical Australia. Mycorrhiza, 8(6): 305-314. Go to original source...
  13. CHLİYEH, M., OUAZZANİ TOUHAMİ, A., FİLALİ-MALTOUF, A., EL MODAFAR, C., MOUKHLİ, A., OUKABLİ, A., BENKİRANE, R. and DOUİRA, A. 2014. Effect of a composite endomycorrhizal inoculum on the growth of olive trees under nurseries conditions in Morocco. International Journal of Pure and Applied Bioscience, 2(2): 1-14.
  14. DERKOWSKA, E., SAS-PASZT, L., SUMOROK, B., SZWONEK, E. and GLUSZEK, S. 2008. The influence of mycorrhization and organic mulches on mycorrhizal frequency in apple and strawberry roots. Journal of Fruit and Ornamental Plant Research, 16: 227-242.
  15. DİAZ, G. and HONRUBİA, M. 1993. Arbuscular mycorrhizae on Tetraclinis articulata (Cupressaceae): Development of mycorrhizal colonization and effect of fertilization and inoculation. Agronomie, 13(4): 267-274. Go to original source...
  16. DUPONNOİS, R., FOUNOUNE, H., MASSE, D. and PONTANİER, R. 2005. Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semiarid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years plantation. Forest Ecology and Management, 207(3): 351-362. Go to original source...
  17. DUPONNOİS, R., PLENCHETTE, C., THİOULOUSE, J. and CADET, P. 2001. The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal. Applied Soil Ecology, 17(3): 239-251. Go to original source...
  18. FESTER, T., SCHMİDT, D., LOHSE, S., WALTER, M. H., GİULİANO, G., BRAMLEY, P. M., FRASER, P. D., HAUSE, B. and STRACK, D. 2002. Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta, 216(1): 148-154. Go to original source...
  19. FİTTER, A. H. 1991. Implication for functioning under natural conditions. Experientia, 47: 350-355. Go to original source...
  20. GERDEMANN, J. W. and NİCOLSON, T. H. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological society, 46(2): 235-244. Go to original source...
  21. GOTO, B. T. 2009. Taxonomia de Glomeromycota: Revisão morfológica, chaves dicotômicas e descrição de novos táxons. Dissertation Thesis. Universidade Federal de Pernambuco Universidade Federal de Pernambuco.
  22. VAN DER HEİJDEN, M. G. A., KLİRONOMOS, J. N., URSİC, M., MOUTOGLİS, P., STREİTWOLF-ENGEL, R., BOLLER, T., WİEMKEN, A. and SANDERS, I. R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396: 69-72. Go to original source...
  23. INVAM. 2017. INVAM Species Descriptions from Reference Cultures. International Collection of (Vesicular) Arbuscular Mycorrhizal Fungi [online]. University of Kansas. Available at: http://fungi.invam.wvu.edu/the-fungi/species-descriptions.html [Accessed: 2022, June 15].
  24. EL KHADDARİ, A., EL GABARDİ, S., TOUHAMİ, A. O., AOUJDAD, J., OUAJDİ, M., EL ANTRY, S., DOUİRA, A. and DAHMANİ, J. 2019. Diversity of endomycorrhizal fungi in the thuya rhizosphere, sefrou region (middle eastern atlas, morocco). Plant Cell Biotechnology And Molecular Biology, 20(23-24): 1143-1159.
  25. EL KHADDARİ, A., AOUJDAD, J., ABBAS, Y., EL ABİDİNE, A. Z., OUAJDİ, M., EL ANTRY, S. and DAHMANİ, J. 2019. The Effect of Inoculation by Indigenous Endomycorrhizal Fungi on the Tolerance. In: EZZIYYANI, M. (Ed.). Advanced Intelligent Systems for Sustainable Development (AI2SD'2018): Vol 1: Advanced Intelligent Systems Applied to Agriculture. Springer. Go to original source...
  26. KLİRONOMOS, J. N. 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84(9): 2292-2301. Go to original source...
  27. LAMBERS, H., RAVEN, J. A., SHAVER, G. R. and SMİTH, S. E. 2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol., 23(2): 95-103. Go to original source...
  28. LAMİNOU MANZO, O., IBRAHİM, D., CAMPANELLA, B. and PAUL, R. 2009. Effets de l'inoculation mycorhizienne du substrat sur la croissance et la résistance au stress hydrique de cinq espèces fixatrices de dunes: Acacia raddiana Savi; Acacia nilotica (L.) Willd. Ex Del. var. adansonii; Acacia senegal (L.) Willd; Prosopis chil. Geo-Eco-Trop, 33: 115-124.
  29. NOUAİM, R. and CHAUSSOD, R. 1996. Rôle des mycorhizes dans l'alimentation hydrique des plante, notamment des ligneux en zone arides. In: La mycorhization des plantes forestières en milieu aride et semi-aride et la lutte contre la désertification dans le bassin méditerranéen. Zaragoza: CIHEAM, pp. 9-26.
  30. MEDDİCH, A., JAİTİ, F., BOURZİK, W., EL ASLİ, A. and HAFİDİ, M. 2015. Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Sci. Hortic., 192: 468-474. Go to original source...
  31. OEHL, F., SİEVERDİNG, E., INEİCHEN, K., MÄDER, P., BOLLER, T. and WİEMKEN, A. 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl. Environ. Microbiol., 69(5): 2816-2824. Go to original source...
  32. OEHL, F., SİEVERDİNG, E., PALENZUELA, J., INEİCHEN, K. et al. 2011. Advances in Glomeromycota taxonomy and classification. IMA fungus, 2(2): 191-199. Go to original source...
  33. PORCEL, R., AROCA, R., AZCON, R. and RUİZ-LOZANO, J. M. 2006. PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol. Biol., 60(3): 389-404. Go to original source...
  34. PORRAS-SORİANO, A., SORİANO-MARTÍN, M. L., PORRAS-PİEDRA, A. and AZCÓN, R. 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol., 166(3): 1350-1359. Go to original source...
  35. REDECKER, D., SCHÜßLER, A., STOCKİNGER, H., STÜRMER, S. L., MORTON, J. B. and WALKER, C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23(7): 515-531. Go to original source...
  36. REDECKER, D., MORTON, J. B. and BRUNS, T. D. 2000. Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Molecular Phylogenetics and Evolution, 14(2): 276-284. Go to original source...
  37. RUİZ LOZANO, J. M. and AZCÓN, R. 1995. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plantarum, 95(3): 472-478. Go to original source...
  38. SCHENK, N. C. and PEREZ, Y. 1990. Manual for the identification of VA mycorrhizal fungi. Synergistic Publication FL. Gainesville: University of Florida.
  39. SCHNEPF, A., LEİTNER, D., KLEPSCH, S., PELLERİN, S. and MOLLİER, A. 2011. Modelling Phosphorus Dynamics in the Soil-Plant System. In: BÜNEMANN, E., OBERSON, A. and FROSSARD, E. (Eds.). Phosphorus in Action. Soil Biology Vol. 26. Berlin, Heidelberg: Springer, pp. 113-133. Go to original source...
  40. SCHÜBLER, A., SCHWARZOTT, D. and WALKER, C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research, 105(11): 1413-1421. Go to original source...
  41. SELLAL, Z., MOUDEN, N., SELMAOUİ, K., DAHMANİ, J., BENKİRANE, R., DOUİRA, A. et al. 2017. Effect of an endomycorrhizal inoculum on the growth of Argan tree. International Journal of Environment, Agriculture and Biotechnology, 2(2): 928-939. Go to original source...
  42. SGHİR, F., CHLİYEH, M., TOUATİ, J., MOURİA, B., OUAZZANİ TOUHAMİ, A., FİLALİ MALTOUF, A., EL MODAFAR, C., MOUKHLİ, A., BENKİRANE, R. and DOUİRA, A. 2014. Effect of a dual inoculation with endomycorrhizae and Trichoderma harzianum on the growth of date palm seedlings. Int. J. Pure App. Biosci., 2(6): 12-26.
  43. SIMARD, F. 2014. Stimulation de la synthèse des composés nutraceutiques et aromatiques dans les fines herbes et les légumes par les champignons mycorhiziens à arbuscules. Maîtrise en biologie végétale Maître ès sciences (M. Sc.). Québec, Canada: Université Laval.
  44. SMİTH, S. and READ, D. J. 1997. Mycorrhizal Symbiosis. 2nd Edition, New York, USA: Academic Press.
  45. SMİTH, S. E., JAKOBSEN, I., GRØNLUND, M. and SMİTH, F. A. 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant physiology, 156(3): 1050-1057. Go to original source...
  46. SMİTH, S. E. and READ, D. J. 2008. Mycorrhizal Symbiosis. 3rd Edition. Oxford: Clarendon Press.
  47. STAVROS, D. V., SHAW, L. J. and SEN, R. 2011. Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant and soil, 340(1-2): 481-490. Go to original source...
  48. STUTZ, J. C., COPEMAN, R., MARTİN, C. A. and MORTON, J. B. 2000. Patterns of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa. Canadian Journal of Botany, 78(2): 237-245. Go to original source...
  49. TALBİ, Z., CHLİYEH, M., MOURİA, B., EL ASRİ, A., AİT AGUİL, F., OUAZZANİ TOUHAMİ, A. BENKİRANE, R. and DOUİRA, A. 2016. Effect of double inoculation with endomycorrhizae and Trichoderma harzianum on the growth of carob plants. IJAPBC, 5(1): 2277-4688.
  50. TOMMERUP, I. C. 1984. Persistence of infectivity by germinated spores of vesicular-arbuscular mycorrhizal fungi in soil. Transactions of the British Mycological Society, 82(2): 275-282. Go to original source...
  51. TOUATİ, J., CHLİYEH, M., OUAZZANİ TOUHAMİ, A., BENKİRANE, R. and DOUİRA, A. 2016. Effect of mycorrhizae on growth and root development of Casuarina spp. under greenhouse conditions. International Journal of Advances in Pharmacy, Biology and Chemistry, 5(3): 261-270.
  52. WİPF, D. 2014. Mycorhizes et vigne. Entretiens scientifiques sur la physiologie de la vigne, Bordeaux, France. hal-02797139, version 1.
  53. WU, Q. S., ZOU, Y. N. and HE, X. H. 2011. Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Sci. Hortic., 129: 294-298. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.