Acta Univ. Agric. Silvic. Mendelianae Brun. 2022, 70(3), 187-204 | DOI: 10.11118/actaun.2022.014

Antiviral Properties of Cerium Nanoparticles

Stanislav Derevianko1, Anatolii Vasylchenko1, Volodymyr Kaplunenko2, Maxym Kharchuk3, Oleksandr Demchenko3, Mykola Spivak3
1 Institute of Agricultural Microbiology and Agro-industrial Production of National Academy of Agrarian Sciences of Ukraine, 97, Shevchenka street, Chernihiv, 14027, Ukraine
2 "Nanomaterials and nanotechnologies" LLC, 27, Vasylkivska street, Kyiv, 03022, Ukraine
3 Danylo Zabolotny Institute of Microbiology and Vriology of National Academy of Sciences of Ukraine, 154, Akademika Zabolotnoho street, Kyiv, 03680, Ukraine

According to the results of the study, the threshold limit values (TLVs) of CeO2, and Ce nanoparticles (NPs) for the culture of swine kidney embryonic cell line (SKECL) have been estimated. The TLVs are 0.1 μg/cm3 for Ce NPs, and 1 μg/cm3 for CeO2 NPs. All NPs were non-toxic for white mice at concentration of 2000 mg/kg, which opens up a perspective for the further use of these NPs in the development of antiviral substances. CeO2, and Ce NPs have decreased the titer of Teschovirus by 1.46-2 lg10 TCD50/ cm3 at TLVs at all stages of virus reproduction. Sensitivity of the strain Dniprovskyi-34 of species Teschovirus A, serotype Porcine teschovirus 1 (PTV-1), to solvents, proteolytic enzyme trypsin under the presence of CeO2, and Ce NPs has been studied. Under the presence of solvents, and trypsin, NPs decreased the infectious titer of the virus slightly by only 0.23 lg10 TCD50/cm3. CeO2, and Ce NPs have not shown antiviral activity under heating to 50 °C, either with the addition of 1 M solution of MgCl2 or without it, and did not cause significant decrease of infectious activity of the virus under pH values 2.0, 7.2, and 11.0 within 10 minutes exposition. Ability of CeO2, and Ce NPs to interact with viral particles, change their morphology, which can affect infective activity of the virus significantly, has been shown. Addition of CeO2, and Ce NPs to the antigen has caused the decrease of the titer of virus-neutralizing antibodies, though it remained high. The results of the studies can be used in development of disinfectants, and antiviral drugs.

Keywords: cerium nanoparticles, Teschovirus A, cerium dioxide, antiviral activity, virus inactivation, electron microscopy

Received: October 11, 2021; Revised: May 17, 2022; Accepted: May 17, 2022; Published: July 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Derevianko, S., Vasylchenko, A., Kaplunenko, V., Kharchuk, M., Demchenko, O., & Spivak, M. (2022). Antiviral Properties of Cerium Nanoparticles. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis70(3), 187-204. doi: 10.11118/actaun.2022.014
Download citation

References

  1. ALPASLAN, E., GEILICH, B. M., YAZICI, H. and WEBSTER, T. J. 2017. pH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth. Scientific reports, 7: 45859. Go to original source...
  2. BABENKO, L. P., ZHOLOBAK, N. M., SHCHERBAKOV, A. B., VOYCHUK, S. I., LAZARENKO, L. M. and SPIVAK, M. Y. 2012. Antibacterial activity of cerium colloids against opportunistic microorganisms in vitro. Mikrobiolohichnyi zhurnal, 74(3): 54-62.
  3. BARAM-PINTO, D., SHUKLA, S., PERKAS, N., GEDANKEN, A. and SARID, R. 2009. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjugate chemistry, 20(8): 1497-1502. Go to original source...
  4. BÖGEL, K. and MAYR, A. 1961. Studies on the resistance to chloroform of the enteroviruses of cattle and pigs [in German: Untersuchungen über die Chloroformresistenz der Enteroviren des Rindes und des Schweines]. Zentralblatt für Veterinärmedizin, 8(9): 908-922. Go to original source...
  5. CANO-GÓMEZ, C., FERNÁNDEZ-PINERO, J., GARCÍA-CASADO, M. A., ZELL, R. and JIMÉNEZ-CLAVERO, M. A. 2017. Characterization of PTV-12, a newly described porcine teschovirus serotype: in vivo infection and cross-protection studies. Journal of General Virology, 98(7): 1636-1645. Go to original source...
  6. DEREVIANKO, S. V., RESHOTKO, L. M., DMYTRUK, O. O., KAPLUNENKO, V. H., KOSINOV, M. V. and DIMCHEV, V. A. 2019. Application of titanium nanoparticles for the inactivation of infectious activity of picornaviruses [in Ukrainian: Застосування наночастинок титану для інактивації інфекційної активності пікорнавірусів]. Patent of Ukraine 120242. State Enterprise "Ukrainian Intellectual Property Institute" (Ukrpatent).
  7. DEREVIANKO, S. V., RESHOTKO, L. M., DMYTRUK, O. O. and VASYLCHENKO, A. V. 2019. Establishment of metal-containing nanoparticles toxicity using cell culture and mice [in Ukrainian: Визначення токсичності металовмісних наночастинок у культурі клітин та на білих мишах]. Agroecological journal, 2: 91-95. Go to original source...
  8. DESHPANDE, S., PATIL, S., KUCHIBHATLA, S. V. and SEAL, S. 2005. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Applied Physics Letters, 87(13): 133113. Go to original source...
  9. DUNNICK, K. M., PILLAI, R., PISANE, K. L., STEFANIAK, A. B., SABOLSKY, E. M. and LEONARD, S. S. 2015. The effect of cerium oxide nanoparticle valence state on reactive oxygen species and toxicity. Biological trace element research, 166(1): 96-107. Go to original source...
  10. ELECHIGUERRA, J. L., BURT, J. L., MORONES, J. R., CAMACHO-BRAGADO, A., GAO, X., LARA, H. H. and YACAMAN, M. J. 2005. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology, 3: 6. Go to original source...
  11. GALDIERO, S., FALANGA, A., VITIELLO, M., CANTISANI, M., MARRA, V. and GALDIERO, M. 2011. Silver nanoparticles as potential antiviral agents. Molecules, 16(10): 8894-8918. Go to original source...
  12. GERALD, B. 2018. A brief review of independent, dependent and one sample t-test. International Journal of Applied Mathematics and Theoretical Physics, 4(2): 50-54. Go to original source...
  13. GERMAN ASSOCIATION FOR THE CONTROL OF VIRAL DISEASES (DVV) E. V. and THE ROBERT KOCH INSTITUTE. 2015. Guideline of the German Association for the Control of Viral Diseases (DVV) e. V. and the Robert Koch Institute (RKI) for testing chemical disinfectants for effectiveness against viruses in human medicine. Version of 1 December, 2014 [in German: Leitlinie der Deutschen Vereinigung zur Bekämpfung der Viruskrankheiten (DVV) e. V. und des Robert Koch-Instituts (RKI) zur Prüfung von chemischen Desinfektionsmitteln auf Wirksamkeit gegen Viren in der Humanmedizin (Fassung vom 1. Dezember 2014)]. Berlin: Springer-Verlag Berlin Heidelberg.
  14. GOPINATH, K., KARTHIKA, V., SUNDARAVADIVELAN, C., GOWRI, S. and ARUMUGAM, A. 2015. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. Journal of Nanostructure in Chemistry, 5: 295-303. Go to original source...
  15. JOHNSTON-PECK, A. C., WANG, J. and TRACY, J. B. 2009. Synthesis and structural and magnetic characterization of Ni (Core)/NiO (Shell) nanoparticles. ACS nano, 3(5): 1077-1084. Go to original source...
  16. KHAN, S. B. and AKHTAR, K. 2018. Introductory Chapter: Cerium Oxide - Applications and Attributes. In: KHAN, S. B. and AKHTAR, K. (Eds.). Cerium Oxide: Applications and Attributes. London: IntechOpen.
  17. KNOWLES, N. J. 2006. Porcine enteric picornaviruses. In: STRAW, B. E., ZIMMERMAN, J. J., D'ALLAIRE, S. and TAYLOR, D. J. (Eds.). Diseases of Swine. 9th edition. Ames, Iowa: Blackwell Pub.
  18. KOSINOV, M. V. and KAPLUNENKO, V. H. 2007. Method of erosion-explosive dispersion of metals [in Ukrainian: Cпосіб ерозійно-вибухового диспергування металів]. Patent of Ukraine 23550. State Enterprise "Ukrainian Intellectual Property Institute" (Ukrpatent).
  19. KRISHNAMOORTHY, K., VEERAPANDIAN, M., ZHANG, L. H., YUN, K. and KIM, S. J. 2014. Surface chemistry of cerium oxide nanocubes: Toxicity against pathogenic bacteria and their mechanistic study. Journal of Industrial and Engineering Chemistry, 20(5): 3513-3517. Go to original source...
  20. LIN, W., HUANG, Y. W., ZHOU, X. D. and MA, Y. 2006. Toxicity of cerium oxide nanoparticles in human lung cancer cells. International journal of toxicology, 25(6): 451-457. Go to original source...
  21. LOKSHYN, M. M., DOROVSKYKH, A. V., LYSENKO, V. S., SIEVOSTIANOV, S. V., TORTYKH, V. A. and BOLBUKH, Y. M. 2017. Process for the preparation of the cerium oxide-silicon dioxide nanocomposite [in Ukrainian: Cпосіб отримання нанокомпозита оксид церію-діоксид кремнію], Patent of Ukraine 118944. State Enterprise "Ukrainian Intellectual Property Institute" (Ukrpatent).
  22. LOZOVSKI, V., LYSENKO, V., PIATNYTSIA, V., SCHERBAKOV, O., ZHOLOBAK, N. and SPIVAK, M. 2012. Physical point of view for antiviral effect caused by the interaction between the viruses and nanoparticles. Journal of Bionanoscience, 6(2): 109-112. Go to original source...
  23. LOZOVSKI, V., LYSENKO, V., PYATNITSIA, V. and SPIVAK, M. 2011. Can nanoparticles be useful for antiviral therapy? Semiconductor Physics, Quantum Electronics & Optoelectronics, 14(4): 489-491. Go to original source...
  24. LU, L., SUN, R. W. Y., CHEN, R., HUI, C. K., HO, C. M., LUK, J. M., LAU, G. K. K. and CHE, C. M. 2008. Silver nanoparticles inhibit hepatitis B virus replication. Antiviral therapy, 13(2): 253-262. Go to original source...
  25. MAINOR, P. 1988. Cultivation, identification and purification of picornaviruses [in Russian: Культивирование, идентификация и очистка пикорнавирусов]. In: MAHY, B. (ed.) Virology. Methods: translated from English [in Russian: Вирусология. Методы: перевод с английского]. Moscow: Mir, pp. 44-65.
  26. MATHEKA, H. D. and MAYR, A. 1962. The stabilizing and reactivating influence of trypsin on the virus of Teschen disease (pig paralysis) and the inactivation of foot-and-mouth disease (FMD) virus by this enzyme [in German: Der stabilisierende und reaktivierende Einfluss von Trypsin auf das Virus der Teschener Krankheit (Schweinelahmung) und die Inaktivirung von Maul-und-Klauenseuche (MKS) Virus durch dieses Enzym]. Arch. ges. Virusforsch., 12(4): 463-471. Go to original source...
  27. MAZURKOVA, N. A., SPITSYNA, Y. E., SHIKINA, N. V. et al. 2010. Interaction of titanium dioxide nanoparticles with influenza virus. Nanotechnol. Russia, 5: 417-420. Go to original source...
  28. MAYR, A., BACHMANN, P. A., BIBRACK, B. and WITTMANN, G. 1977. Virological methods. Volume 2, Serology [in German: Virologische Arbeitsmethoden. Band 2, Serologie]. Jena: Gustav Fischer Verlag.
  29. MELNICK, J. and WALLIS, C. 1962. Cationic stabilization - A new property of enteroviruses. Virology, 16(4): 504-506. Go to original source...
  30. MOHAMED, H. E. A., AFRIDI, S., KHALIL, A. T., ALI, M., ZOHRA, T., AKHTAR, R., IKRAM, A., SHINWARI, Z. K. and MAAZA, M. 2020. Promising antiviral, antimicrobial and therapeutic properties of green nanoceria. Nanomedicine, 15(5): 467-488. Go to original source...
  31. MONTINI, T., MELCHIONNA, M., MONAI, M. and FORNASIERO, P. 2016. Fundamentals and catalytic applications of CeO2-based materials. Chemical reviews, 116(10): 5987-6041. Go to original source...
  32. MUNUSAMY, S., BHAKYARAJ, K., VIJAYALAKSHMI, L., STEPHEN, A. and NARAYANAN, V. 2014. Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. Int. J Innov. Res. Sci. Eng., 2: 318-323.
  33. NAKAGAWA, K., TEZUKA, Y., OHSHIMA, T., KATAYAMA, M., OGATA, T., SOTOWA, K. I., KATOH, M. and SUGIYAMA, S. 2016. Formation of cerium carbonate hydroxide and cerium oxide nanostructures by self-assembly of nanoparticles using surfactant template and their catalytic oxidation. Advanced Powder Technology, 27(5): 2128-2135. Go to original source...
  34. NEAL, C. J., FOX, C. R., SAKTHIVEL, T. S., KUMAR, U., FU, Y., DRAKE, C., PARKS, G. D. and SEAL, S. 2021. Metal-Mediated Nanoscale Cerium Oxide Inactivates Human Coronavirus and Rhinovirus by Surface Disruption. ACS nano, 15(9): 14544-14556. Go to original source...
  35. NEFEDOVA, A., RAUSALU, K., ZUSINAITE, E., VANETSEV, A., ROSENBERG, M., KOPPEL, K., LILLA, S., VISNAPUU M., ©MITS, K., KISAND, V., TÄTTE, T. and IVASK, A. 2022. Antiviral efficacy of cerium oxide nanoparticles. Reseach Square Preprint. DOI: https://doi.org/10.21203/rs.3.rs-1382761/v1 Go to original source...
  36. OKSAMYTNYI, V. M., ZHOLOBAK, N. M., TYMOSHOK, N. O., SHCHERBAKOV, A. B., RYBALKO, S. L., SINITSYN, V. A., VOLKOV, M. V., SPIVAK, M. Y. and SHEVHUK, V. O. 2014. Interferon and сerim dioxide nanoparticles as the basis of creation of antiviral drugs [in Ukrainian: Інтерферон та наночастинки діоксиду церію як основа створення антивірусного препарату]. Bulletin "Veterinary biotechnology", 24: 146-153.
  37. PAIER, J., PENSCHKE, C. and SAUER, J. 2013. Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chemical reviews, 113(6): 3949-3985. Go to original source...
  38. PENG, R., LI, S., SUN, X., REN, Q., CHEN, L., FU, M., WU, J. and YE, D. 2018. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Applied Catalysis B: Environmental, 220: 462-470. Go to original source...
  39. PULIDO-REYES, G., RODEA-PALOMARES, I., DAS, S., SAKTHIVEL, T. S., LEGANES, F., ROSAL, R., SUDIPTA, S. and FERNÁNDEZ-PIÑAS, F. 2015. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Scientific reports, 5: 15613. Go to original source...
  40. RAI, M., DESHMUKH, S. D., INGLE, A. P., GUPTA, I. R., GALDIERO, M. and GALDIERO S. 2014. Metal nanoparticles: the protective nanoshield against virus infection. Crit. Rev. Microbiol., 42(1): 46-56. Go to original source...
  41. REED, L. J., MUENCH, H. 1938. A simple method of estimation of fifty percent endpoints. The American Journal of Hygiene, 27(3): 493-497. Go to original source...
  42. ROGERS, J. V., PARKINSON, C. V., CHOI, Y. W., SPESHOCK, J. L. and HUSSAIN, S. M. 2008. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Research Letters, 3(4): 129-133. Go to original source...
  43. ROVOZZO, G. C. and BURKE, C. N. 1973. A manual of basic virological techniques. Englewood Cliffs, NJ: Prentice-Hall.
  44. SARAC, B., GAMMER, C., DENG, L., PARK, E., YOKOYAMA, Y., STOICA, M. and ECKERT, J. 2018. Elastostatic reversibility in thermally formed bulk metallic glasses: nanobeam diffraction fluctuation electron microscopy. Nanoscale, 10(3): 1081-1089. Go to original source...
  45. SHCHERBAKOV, A. B., IVANOVA, O. S., SPIVAK, N. Y. et al. 2016. Synthesis and biomedical applications of nanodispersed cerium dioxide [in Russian: Cинтез и биомедицинские применения нанодисперсного диоксида церия]. Tomsk: Publishing House of National Research Tomsk State University.
  46. SHCHERBAKOV, O. B., IVANOV, V. K. and USATENKO, O. V. 2011. Process for the preparation of composition, comprising water-soluble nanoparticles of cerium oxide [in Ukrainian: Cпосіб одержання композиції, що містить водорозчинні наночастинки оксиду церію]. Patent of Ukraine 93073. State Enterprise "Ukrainian Intellectual Property Institute" (Ukrpatent).
  47. SHYDLOVSKA, O. A., KHARCHENKO, E., OSENNIY, I. M., SPIVAK, M. Y., SHCHERBAKOV, O. B. and ZHOLOBAK, N. M. 2018. Cerium dioxide nanoparticles - efficient antiviral agent and adjuvant for biologically active molecules [in Ukrainian: Наночастинки діоксиду церію - ефективний антивірусний засіб та ад'ювант біологічно-активних молекул]. Scientific Journal , 1(10): 26-30. Go to original source...
  48. SIB SWISS INSTITUTE OF BIOINFORMATICS. 2011. Teschovirus. ViralZone [online]. Available at: https://viralzone.expasy.org/659 [Accessed: 2020, February 22].
  49. SPIVAK, M. Y., LOKSHYN, M. M. and LYSENKO, V. S. 2014. Method for obtaining medical antiviral preparations containing nanoparticles and a preparation against herpes virus hiv and influenza virus h1n1 produced by this method [in Ukrainian: Cпосіб виготовлення медичних противірусних препаратів, що містять наночастинки, та препарат проти вірусів герпесу hiv і грипу h1n1, виготовлений за даним способом]. Patent of Ukraine 106101. State Enterprise "Ukrainian Intellectual Property Institute" (Ukrpatent).
  50. SPIVAK, M. Y., LYSENKO, V. S., LOKSHYN, M. M. and LOZOVSKYI, V. Z. 2014. Method to obtain human interferone using cerium oxide nanoparticles [in Ukrainian: Cпосіб отримання людського інтерферону з використанням наночастинок оксиду церію]. Patent of Ukraine 106111. State Enterprise "Ukrainian Intellectual Property Institute" (Ukrpatent).
  51. SUN, L., SINGH, A. K., VIG, K., PILLAI, S. R. and SINGH, S. R. 2008. Silver nanoparticles inhibit replication of respiratory syncytial virus. Journal of Biomedical Nanotechnology, 4(2): 149-158. Go to original source...
  52. SURYANARAYANA, C. 1984. Metallic glasses. Bulletin of Materials Science, 6(3): 579-594. Go to original source...
  53. THE EUROPEAN COMMITTEE FOR STANDARDIZATION. 2015. Chemical disinfectants and antiseptics - Application of European Standards for chemical disinfectants and antiseptics. UNE EN 14885. Wien: Austrian Standards Institute.
  54. THE EUROPEAN COMMITTEE FOR STANDARDIZATION. 2013. Chemical disinfectants and antiseptics - Quantitative suspension test for the evaluation of virucidal activity in the medical area - Test method and requirements (Phase 2/Step 1). ILNAS EN 14476+A1. Dublin: The National Standards Authority of Ireland.
  55. THE ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT. 2008. Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure. OECD Guidelines for the Testing of Chemicals, Section 4. Paris: OECD Publishing.
  56. ULKER, D., ABACIOGLU, N. and SEHIRLI, A. O. 2022. Cerium Oxide (CeO2) Nanoparticles Could Have Protective Effect Against COVID-19. Letters in Applied NanoBioScience, 12(1): 12. Go to original source...
  57. VAZIROV, R. A., SOKOVNIN, S. Y., ILVES, V. G., BAZHUKOVA, I. N., PIZUROVA, N. and KUZNETSOV, M. V. 2018. Physicochemical characterization and antioxidant properties of cerium oxide nanoparticles. Journal of Physics: Conference Series, 1115(3): 032094. Go to original source...
  58. VOLKOVA, I. V., BOVA, T. O. and DEREVIANKO, S. V. 2011. Method for production of hyper-immune blood serum to animal and plant viruses [in Ukrainian: Cпосіб одержання гіперімунної сироватки крові до вірусів тварин і рослин]. Patent of Ukraine 58734. State Enterprise "Ukrainian Intellectual Property Institute" (Ukrpatent).
  59. XIA, T., KOVOCHICH, M., LIONG, M., MADLER, L., GILBERT, B., SHI, H., YEH, J. I., ZINC, J. I. and NEL, A. E. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS nano, 2(10): 2121-2134. Go to original source...
  60. YAMADA, M., MIYAZAKI, A., YAMAMOTO, Y., NAKAMURA, K., ITO, M., TSUNEMITSU, H. and NARITA, M. 2014. Experimental teschovirus encephalomyelitis in gnotobiotic pigs. Journal of comparative pathology, 150(2-3): 276-286. Go to original source...
  61. ZHANG, C. F., CUI, S. J., HU, S., ZHANG, Z., GUO, Q. and ZELL, R. 2010. Isolation and characterization of the first Chinese strain of porcine Teschovirus-8. Journal of Virological Methods, 167(2): 208-213. Go to original source...
  62. ZHANG, J., WU, Z., LIU, T., HU, T., WU, Z. and JU, X. 2001. XANES study on the valence transitions in cerium oxide nanoparticles. Journal of synchrotron radiation, 8(2): 531-532. Go to original source...
  63. ZHOLOBAK, N. M., IVANOV, V. K., SHCHERBAKOV, A. B., SHAPOREV, A. S., POLEZHAEVA, O. S., BARANCHIKOV, A. Y., SPIVAK, N. Y. and TRETYAKOV, Y. D. 2011. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. Journal of Photochemistry and Photobiology B: Biology, 102(1): 32-38. Go to original source...
  64. ZHOLOBAK, N. M., OLEVINSKAYA, Z. M., SPIVAK, M. Y., SHCHERBAKOV, A. B., IVANOV, V. K. and USATENKO, A. V. 2010. Antiviral effect of cerium dioxide nanoparticles stabilized by low-molecular polyacrylic acid [in Russian: Антивирусное действие наночастиц диоксида церия, стабилизированных низкомолекулярной полиакриловой кислотой]. Mikrobiolohichnyi Zhurnal, 72(3): 42-47.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.