Acta Univ. Agric. Silvic. Mendelianae Brun. 2021, 69(4), 491-500 | DOI: 10.11118/actaun.2021.044

Antifungal Activity of a Composition of Selenium and Iodine Nanoparticles

Anatolii Vasylchenko1, Stanislav Derevianko1
1 Institute of Agricultural Microbiology and Agro-industrial Production of NAAS of Ukraine, 97 Shevchenka St., Chernihiv, 14027, Ukraine

The aim of this study was to investigate antifungal properties of the composition of Se and I nanoparticles (NPs) against strains of phytopathogenic fungi Acremonium cucurbitacearum 502, Acremonium strictum 048 and Fusarium sp. 072. It has been found that the composition of Se and I NPs has antifungal properties against these strains. The highest antifungal activity was against strain A. cucurbitacearum 502, manifesting as the decrease in the number of colonies (by 60.00- 86.67%) and the decrease of the diameter of colonies (by 78.95-94.22%). Antifungal activity against strain A. strictum 048 manifested as the decrease in the diameter of colonies by 52.67-75.00%. The diameter of colonies the strain Fusarium sp. 072 decreased by 25.26-51.75%. Changes in the morphology of the colonies of the strain A. strictum 048 were also noticed. Thus, the composition of Se and I nanoparticles has antifungal activity against fungal strains A. cucurbitacearum 502, A. strictum 048 and Fusarium sp. 072, which are valuable plant pathogens. The composition of Se and I NPs can be recommended for the development of the measures for the control of phytopathogenic fungi.

Keywords: fungi, plant-pathogenic fungi, nanoparticles, antifungal activity, selenium, iodine, acremonium, fusarium

Received: March 12, 2021; Revised: June 22, 2021; Accepted: June 24, 2021; Published: September 1, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vasylchenko, A., & Derevianko, S. (2021). Antifungal Activity of a Composition of Selenium and Iodine Nanoparticles. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis69(4), 491-500. doi: 10.11118/actaun.2021.044
Download citation

References

  1. APOSTOLOV, K. 1980. The effects of iodine on the biological activities of myxoviruses. Epidemiology & Infection, 84(3): 381-388. Go to original source...
  2. CHOUDHURY, S. R., GHOSH, M., MANDAL, A., CHAKRAVORTY, D., PAL, M., PRADHAN, S. and GOSWAMI, A. 2011. Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum. Applied microbiology and biotechnology, 90(2): 733-743. Go to original source...
  3. COOK, N. M., CHNG, S., WOODMAN, T. L., WARREN, R., OLIVER, R. P. and SAUNDERS, D. G. 2021. High frequency of fungicide resistance-associated mutations in the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. Pest Management Science., 77(7): 3358-3371. Go to original source...
  4. EFIMOV, N. N., LOGINOV, D. A., SHARIPOV, M. Y., NAZAROV, A. A., NELYUBINA, Y. V. and PEREKALIN, D. S. 2020. Unexpected antifungal activity of half-sandwich complexes with metal-iodine bonds. Journal of Organometallic Chemistry, 916: 121272. Go to original source...
  5. ESWARAPRIYA, B. and JEGATHEESAN, K. S. 2015. Antifungal activity of biogenic selenium nanoparticles synthesized from electronic waste. International Journal of PharmTech Research, 8(3): 383-386.
  6. FAKHRI, A. and NEJAD, P. A. 2016. Antimicrobial, antioxidant and cytotoxic effect of Molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination. Journal of Photochemistry and Photobiology B: Biology, 159: 211-217. Go to original source...
  7. FARRAG, A. A., ISMAIL, M. A., ABDEL-RAZEK, K. A. and ALI, A. A. 2012. In vitro antifungal effects of some chemotherapeutic agents against fungi commonly isolated from repeat breeder animals. Journal of Basic & Applied Mycology, 3: 13-19.
  8. FEDOTOV, G. N., SHOBA, S. A., FEDOTOVA, M. F. and GOREPEKIN, I. V. 2019. Assessment of effects of soil allelotoxicity and toxicity of fungicides on the development of grain crops. Eurasian Soil Science, 52(5): 543-549. Go to original source...
  9. GUPTA, P. K. 2018. Veterinary toxicology. Academic Press. Go to original source...
  10. HE, L., LIU, Y., MUSTAPHA, A. and LIN, M. 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological research, 166(3): 207-215. Go to original source...
  11. HUANG, T., HOLDEN, J. A., HEATH, D. E., O'BRIEN-SIMPSON, N. M. and O'CONNOR, A. J. 2019. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale, 39(11): 14937-14951. Go to original source...
  12. HUANG, X., CHEN, X., CHEN, Q., YU, Q., SUN, D. and LIU, J. 2016. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta biomaterialia, 30: 397-407. Go to original source...
  13. IHSSEN, J., SCHUBERT, M., THÖNY-MEYER, L. and RICHTER, M. 2014. Laccase catalyzed synthesis of iodinated phenolic compounds with antifungal activity. PLoS One, 9: e89924. Go to original source...
  14. JOSHI, S. M., DE BRITTO, S., JOGAIAH, S. and ITO, S. I. 2019. Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules, 9(9): 419. Go to original source...
  15. KANHED, P., BIRLA, S., GAIKWAD, S., GADE, A., SEABRA, A. B., RUBILAR, O., DURAN, N. and MAHENDRA, R. 2014. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Letters, 115: 13-17. Go to original source...
  16. KIM, S. W., JUNG, J. H., LAMSAL, K., KIM, S. Y., MIN, J. S. and LEE, Y. S. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40(1): 53-58. Go to original source...
  17. KNEBEL, C., HEISE, T., ZANGER, U. M., LAMPEN, A., MARX-STOELTING, P. and BRAEUNING, A. 2019. The azole fungicide tebuconazole affects human CYP1A1 and CYP1A2 expression by an aryl hydrocarbon receptor-dependent pathway. Food and Chemical Toxicology, 123: 481-491. Go to original source...
  18. KONDO, S., TABE, Y., YAMADA, T., MISAWA, S., OGURI, T., OHSAKA, A. and MIIDA, T. 2012. Comparison of antifungal activities of gentian violet and povidone-iodine against clinical isolates of Candida species and other yeasts: a framework to establish topical disinfectant activities. Mycopathologia, 173(1): 21-25. Go to original source...
  19. KOSINOV, M. V. and KAPLUNENKO, V. G. 2007. Method of erosion-explosive dispersion of metals [in Ukrainian: Cпосіб ерозійно-вибухового диспергування металів]. Patent of Ukraine No. 23550. State Enterprise Ukrainian Intellectual Property Institute (UKRPATENT).
  20. KUMAR, N., WILLIS, A., SATBHAI, K., RAMALINGAM, L., SCHMITT, C., MOUSTAID-MOUSSA, N. and CRAGO, J. 2020. Developmental toxicity in embryo-larval zebrafish (Danio rerio) exposed to strobilurin fungicides (azoxystrobin and pyraclostrobin). Chemosphere, 241: 124980. Go to original source...
  21. LOTFALI, E., TOREYHI, H., SHARABIANI, K. M., FATTAHI, A., SOHEILI, A., GHASEMI, R., KEYMARAM, M., REZAEE, Y. and IRANPANAH, S. 2021. Comparison of Antifungal Properties of Gold, Silver, and Selenium Nanoparticles Against Amphotericin B-Resistant Candida glabrata Clinical Isolates. Avicenna Journal of Medical Biotechnology, 13(1): 47-50. Go to original source...
  22. LV, X., PAN, L., WANG, J., LU, L., YAN, W., ZHU, Y., XU, Y., GUO, M., ZHUANG, S. 2017. Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity. Environmental pollution, 222: 504-512. Go to original source...
  23. MCDONALD, M. C., RENKIN, M., SPACKMAN, M., ORCHARD, B., CROLL, D., SOLOMON, P. S. and MILGATE, A. 2019. Rapid parallel evolution of azole fungicide resistance in Australian populations of the wheat pathogen Zymoseptoria tritici. Applied and Environmental Microbiology, 85(4): e01908-18. Go to original source...
  24. MCDONNELL, G. and RUSSELL, A. D. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clinical microbiology reviews, 12(1): 147-179. Go to original source...
  25. NABIPOUR, H., GHAMMAMY, S. and RAHMANI, A. 2011. Synthesis of a new dithiocarbamate cobalt complex and its nanoparticles with the study of their biological properties. IET Micro & Nano Letters, 6(4): 217-220. Go to original source...
  26. SEVASTOS, A., KALAMPOKIS, I. F., PANAGIOTOPOULOU, A., PELECANOU, M., ALIFERIS, K. A. 2018. Implication of Fusarium graminearum primary metabolism in its resistance to benzimidazole fungicides as revealed by 1H NMR metabolomics. Pesticide biochemistry and physiology, 148: 50-61. Go to original source...
  27. SHAHID, M., AHMED, B., ZAIDI, A. and KHAN, M. S. 2018. Toxicity of fungicides to Pisum sativum: a study of oxidative damage, growth suppression, cellular death and morpho-anatomical changes. RSC advances, 8(67): 38483-38498. Go to original source...
  28. SHAHVERDI, A. R., FAKHIMI, A., MOSAVAT, G., JAFARI-FESHARAKI, P., REZAIE, S. and REZAYAT, S. M. 2010. Antifungal activity of biogenic selenium nanoparticles. World Applied Sciences Journal, 10(8): 918-922.
  29. SHAKIBAIE, M., MOHAZAB, N. S. and MOUSAVI, S. A. A. 2015. Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans. Jundishapur journal of microbiology, 8(9): e26381. Go to original source...
  30. SPRINGTHORPE, V. S. and SATTAR, S. A. 1990. Chemical disinfection of virus-contaminated surfaces. Critical Reviews in Environmental Science and Technology, 20(3): 169-229. Go to original source...
  31. SYROMYATNIKOV, M. Y., KOKINA, A. V., LOPATIN, A. V., STARKOV, A. A. and POPOV, V. N. 2017. Evaluation of the toxicity of fungicides to flight muscle mitochondria of bumblebee (Bombus terrestris L.). Pesticide biochemistry and physiology, 135: 41-46. Go to original source...
  32. VRANDEČIĆ, K., ĆOSIĆ, J., ILIĆ, J., RAVNJAK, B., SELMANI, A., GALIĆ, E., PEM, B., BARBIR, R., VRČEK, I. V. and VINKOVIĆ, T. 2020. Antifungal activities of silver and selenium nanoparticles stabilized with different surface coating agents. Pest Management Science, 76(6): 2021-2029. Go to original source...
  33. WADE, A., LIN, C. H., KURKUL, C., REGAN, E. R. and JOHNSON, R. M. 2019. Combined toxicity of insecticides and fungicides applied to California almond orchards to honey bee larvae and adults. Insects, 10(1): 20. Go to original source...
  34. WU, S., LEI, L., LIU, M., SONG, Y., LU, S., LI, D., SHI, H., RALEY-SUSMAN, K. M. and HE, D. 2018. Single and mixture toxicity of strobilurin and SDHI fungicides to Xenopus tropicalis embryos. Ecotoxicology and environmental safety, 153: 8-15. Go to original source...
  35. YANG, L. N., HE, M. H., OUYANG, H. B., ZHU, W., PAN, Z. C., SUI, Q. J., SHANG, L. P. and ZHAN, J. 2019. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC microbiology, 19: 205. Go to original source...
  36. YIP, J., LIU, L., WONG, K. H., LEUNG, P. H., YUEN, C. W. M. and CHEUNG, M. C. 2014. Investigation of antifungal and antibacterial effects of fabric padded with highly stable selenium nanoparticles. Journal of applied polymer science, 131(17): 40728. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.