Acta Univ. Agric. Silvic. Mendelianae Brun. 2021, 69(3), 403-416 | DOI: 10.11118/actaun.2021.037
Investigation of the Sanitary State of Air and Refrigeration Equipment of Meat Processing Enterprises in Kazakhstan Using the Method of Metagenomic Analysis
- 1 Kazakh Research Institute of Processing and Food Industry LLP, 238 "G" Gagarin Ave, Almaty, 050060, Republic of Kazakhstan
- 2 SPC of Microbiology and Virology, 103 Bogenbai Batyr str., Almaty, 050010, Republic of Kazakhstan
- 3 FSBEI HE Moscow State University of Food Production, 11 Volokolamsk Highway, Moscow, 125080, Russia
Taking into account the appearance of "new pathogens", persistent and uncultivated microorganisms, increasing the resistance of modern strains of microorganisms to disinfectants, increasing their antibiotic resistance and ability to biofilm formation, there is a need to study the microbial community of refrigerating chambers at meat processing enterprises in modern conditions, which was the aim of this work. The study of sanitary condition of the refrigeration equipment of a meat processing plants of the Almaty region of Kazakhstan was carried out by classical methods of microbiology and metagenomic analysis. Methods of classical microbiology allowed to identify the following microflora of refrigerating chambers of meat processing enterprises: bacteria Bacillus subtilis, Bacillus mesentericus, Pseudomonas sp., Sarcina flava, yeast Rhodotorula sp., mycelial fungi Penicillium sp., Alternaria sp., Mucor sp., Aspergillus sp., Chrososporum sp., Tamnidium sp. Metagenomic analysis showed that the bacterial microflora of refrigerating chambers is mainly represented by three phyla: Firmicutes (95.33%-97.94%), Proteobacteria (1.39%-1.02%), Actinobacteria (1.11%-0.63%) and their ratio depends on the temperature of the refrigerators well as on the observance of hygiene standards by personnel. The research results can serve as the basis for recommendations for improving the sanitary condition and safety at meat processing plants.
Keywords: refrigerating chambers, microbial contamination, meat, meat products, bacteria, yeast, mold, metagenomic analysis
Received: March 23, 2021; Revised: April 27, 2021; Accepted: May 17, 2021; Published: July 1, 2021 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- BAI, A. J. and RAI VITTAL, R. 2014. Quorum sensing regulation and inhibition of exoenzyme production and biofilm formation in the food spoilage bacteria Pseudomonas psychrophila PSPF19. Food Biotechnology, 28(4): 293-308.
Go to original source...
- BROOKS, J. D. and FLINT, S. H. 2008. Biofilms in the food industry: problems and potential solutions. International Journal of Food Science & Technology, 43(12): 2163-2176.
Go to original source...
- BROWN, H. L., REUTER, M., SALT, L. J., CROSS, K. L., BETTS, R. P. and van VLIET, A. H. M. 2014. Chicken juice enhances surface attachment and biofilm formation of Campylobacter jejuni. Applied and Environmental Microbiology, 80(22): 7053-7060.
Go to original source...
- COOMBS, C. E. O., HOLMAN, B. W. B., FRIEND, M. A. and HOPKINS, D. L. 2017. Long-term red meat preservation using chilled and frozen storage combinations: A review. Meat Science, 125: 84-94.
Go to original source...
- DELHALLE, L., TAMINIAU, B., FASTREZ, S., FALL, A., BALLESTEROS, M., BURTEAU, S. and DAUBE, G. 2020. Evaluation of Enzymatic Cleaning on Food Processing Installations and Food Products Bacterial Microflora. Frontiers in Microbiology, 11: 1827.
Go to original source...
- DOSPEKHOV, B. A. 2012. Methodology of field experience (with the basics of statistical processing of research results) [in Russian: Методика полевого опыта (с основами статистической обработки результатов исследований)]. Moscow: Book on Demand.
- DOULGERAKI, A. I., ERCOLINI, D., VILLANI, F. and NYCHAS, G. J. E. 2012. Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology, 157(2): 130-141.
Go to original source...
- DROSINOS, E. H. and BOARD, R. G. 1994. Growth of Listeria monocytogenes in meat juice under a modified atmosphere at 4 ℃ with or without members of a microbial association from chilled lamb under a modified atmosphere. Letters in Applied Microbiology, 19(3): 134-137.
Go to original source...
- DUNLAP, C. A., BOWMAN, M. J., SCHISLER, D. A. and ROONEY, A. P. 2016. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis. International Journal of Systematic and Evolutionary Microbiology, 66(6): 2438-2443.
Go to original source...
- ERCOLINI, D., RUSSO, F., TORRIERI, E., MASI, P. and VILLANI, F. 2006. Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Applied and Environmental Microbiology, 72(7): 4663-4671.
Go to original source...
- FAO. 2019. Regional Overview of Food Security and Nutrition in Europe and Central Asia 2019. Structural Transformations of Agriculture for Improved Food Security, Nutrition and Environment. Budapest: FAO.
- FERREIRA, S., FRAQUEZA, M. J., QUEIROZ, J. A., DOMINGUES, F. C. and OLEASTRO, M. 2015. Genetic diversity, antibiotic resistance and biofilm-forming ability of Arcobacter butzleri isolated from poultry and environment from a Portuguese slaughterhouse. International Journal of Food Microbiology, 162(1): 82-88.
Go to original source...
- KLINDWORTH, A., PRUESSE, E., SCHWEER, T., PEPLIES, J., QUAST, C. et al. 2013. Evalution of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic acids research, 41(1): e1.
Go to original source...
- KOSTENKO, Y. G. 2015. Guidelines for sanitary and microbiological bases and prevention of risks in the production and storage of meat products [in Russian: Руководство по санитарной-микробиологическим основам и предупреждению рисков при производстве и хранении мясной продукции]. Moscow: Technosphere.
- KRIEG, N. R. et al. (Eds.). 2010. Bergey's Manual of Systematic Bacteriology. Vol. 4: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. 2nd Edition. New York: Springer.
- LEBEAUX, D. and GHIGO, J. M. 2012. Management of biofilm-associated infections: what can we expect from recent research on biofilm lifestyles? Médecine sciences, 28(8-9): 727-739.
Go to original source...
- LEE, K. W. K., PERIASAMY, S., MUKHERJEE, M., XIE, C., KJELLEBERG, S. and RICE, S. A. 2014. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME Journal, 8(4): 894-907.
Go to original source...
- LI, J., FENG, J., MA, L., de la FUENTE NUNEZ, C., GOLZ, G. and LU, X. 2017. Effects of meat juice on biofilm formation of Campylobacter and Salmonella. International Journal of Food Microbiology, 253: 20-28.
Go to original source...
- LIU, X., JI, L., WANG, X., LI, J., ZHU, J. and SUN, A. 2018. Role of RpoS in stress resistance, quorum sensing and spoilage potential of Pseudomonas fluorescens. International Journal of Food Microbiology, 270: 31-38.
Go to original source...
- LIU, Y. J., XIE, J., ZHAO, L. J., QIAN, Y. F., ZHAO, Y. and LIU, X. 2015. Biofilm formation characteristics of Pseudomonas lundensis isolated from meat. Journal of Food Science, 80(12): 2904-2910.
Go to original source...
- LOGAN, N. A., DE CLERCK, E., LEBBE, L., VERHELST, A., GORIS, J., FORSYTH, G., RODRIGUEZ-DIAZ, M., HEYNDRICKX, M. and DE VOS, P. 2004. Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov., from Antarctic volcanic soils and a gelatin-processing plant. International Journal of Systematic and Evolutionary Microbiology, 54(4): 1071-1076.
Go to original source...
- MAKRAI, L., KOBAYASHI, A., MATSUOKA, M., SASAKI, Y., KAKUDA, T., DÉNES, B., HAJTÓS, I., RÉVÉSZ, I., JÁNOSI, K., FODOR, L., VARGA, J. and TAKAI, S. 2008. Isolation and characterisation of Rhodococcus equi from submaxillary lymph nodes of wild boars (Sus scrofa). Veterinary Microbiology, 131(3-4): 318-323.
Go to original source...
- MEI, Y.-Z., HUANG, P.-W., LIU, Y., HE, W., FANG, W.-W. 2016. Cold stress promoting a psychrotolerant bacterium Pseudomonas fragi P121 producing trehaloase. World Journal of Microbiology and Biotechnology, 32(8): 1-9.
Go to original source...
- MOHAREB, F., IRIONDO, M., DOULGERAKI, A. I., Van HOEK, A., AARTS, H., CAUCHI, M., NYCHAS, G.-J. E. 2015. Identification of meat spoilage gene biomarkers in Pseudomonas putida using gene profiling. Food Control, 57(C): 152-160.
Go to original source...
- NIEMINEN, T. T., KOSKINEN, K., LAINE, P., HULTMAN, J., SADE, E., PAULIN, L., PALORANTA, A., JOHANSSON, P., BJÖRKROTH, J., AUVINEN, P. 2012. Comparison of microbial communities in marinated and unmarinated broiler meat by metagenomics. International Journal of Food Microbiology, 157: 142-149.
Go to original source...
- NIEMINEN, T. T., VALITALO, H., SADE, E., PALORANTA, A., KOSKINEN, K., BJÖRKROTH, J. 2012. The effect of marination on lactic acid bacteria communities in raw broiler fillet strips. Frontiers in Microbiology, 3: 376.
Go to original source...
- OECD. 2020. Meat consumption (indicator). OECDiLibrary. [Online]. Available at: https://doi.org/10.1787/fa290fd0-en [Accessed: 2020, October 15].
Go to original source...
- OECD/FAO. 2020. OECD-FAO Agricultural Outlook, OECD Agriculture statistics (database). OECDiLibrary. [Online]. Available at: http://dx.doi.org/10.1787/agr-outl-data-en [Accessed: 2020, October 15].
Go to original source...
- OLUSEGUN, A. O. and INIOBONG, G. N. 2011. Spoilage and preservation of meat: a general appraisal and potential of lactic acid bacteria as biological preservatives. International Research Journal of Biotechnology, 2: 33-46.
- PAL, M., AYELE, Y., PATEL, A. S. and DULO, F. 2018. Microbiological and hygienic quality of Meat and Meat Products. Beverage & Food World, 45(5): 21-27.
- PALMISANO, M. M., NAKAMURA, L. K., DUNCAN, K. E., ISTOCK, C. A. and COHAN, F. M. 2001. Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis, isolated from soil in the Sonoran Desert, Arizona. International Journal of Systematic and Evolutionary Microbiology, 51(Pt5): 1671-1679.
Go to original source...
- PENNACCHIA, C., ERCOLINI, D. and VILLANI, F. 2011. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiology, 28(1): 84-93.
Go to original source...
- PESTOVA, O. V. 2000. Biosynthesis of exopolysaccharides by Bacillus mucilaginosus bacteria under deep cultivation conditions and a new aspect of their use [in Russian: Биосинтез экзополисахаридов бактериями Бациллус мучилагиносус в глубинных условиях культивирования и новый аспект их использования]. PhD Thesis. St. Petersburg.
- ROUGER, A., REMENANT, B., PRÉVOST, H. and ZAGOREC, M. 2017. A method to isolate bacterial communities and characterize ecosystems from food products: Validation and utilization as a reproducible chicken meat model. International Journal of Food Microbiology, 247: 38-47.
Go to original source...
- ROUGER, A., TRESSE, O. and ZAGOREC, M. 2017. Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics. Microorganisms, 5(3): 50.
Go to original source...
- SAUTER, E. A. 1987. Microbiology of frozen poultry products. In: Cunningham, F. E. and Cox, N. A. (Eds.). The Microbiology of Poultry Meat Products. Academic Press: New York, pp. 333-339.
Go to original source...
- SOKOLOV, D. M. and SOKOLOV, M. S. 2015. Rapid tests of Singlepath and Duopath for detection of pathogenic microorganisms and toxins in food products [in Russian: Экспресс-тесты Singlepath и Duopath для выявления патогенных микроорганизмов и токсинов в пищевых продуктах]. Dairy industry, 1: 4-6.
- STANBOROUGH, T., FEGAN, N., POWELL, S. M., SINGH, T., TAMPLIN, M. and CHANDRY, P. S. 2018. Genomic and metabolic characterization of spoilage-associated Pseudomonas species. International Journal of Food Microbiology, 268: 61-72.
Go to original source...
- STELLATO, G., LA STORIA, A., De FILIPPIS, F., BORRIELLO, G., VILLANI, F. and ERCOLINIA, D. 2016. Overlap of Spoilage-Associated Microbiota between Meat and the Meat Processing Environment in Small-Scale and Large-Scale Retail Distributions. Applied and Environmental Microbiology, 82(13): 4045-4054.
Go to original source...
- THE GREENGENES DATABASE. 2020. The Green Genes. [Online]. Available at: https://greengenes.lbl.gov/Download/FAQS/index.htm [Accessed: 2020, October 15].
- TULYAKOVA, T. V., FURSOVA, I. A. and SHIBANOV, E. I. 2013. Safety of food raw materials - the most important component of food safety [in Russian: Безопасность продовольственного сырья - важнейшая составляющая безопасности пищевых продуктов]. Food industry, 5: 33.
- UK STATUTORY INSTRUMENTS. 2002. The Meat (Hazard Analysis and Critical Control Point) (England). Statutory Instrument No. 889. UK Statutory Instruments.
- VAISHAMPAYAN, P., PROBST, A., KRISHNAMURTHI, S., GHOSH, S., OSMAN, S., MCDOWALL, A., RUCKMANI, A., MAYILRAJ, S. and VENKATESWARAN, K. 2004. Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room. International Journal of Systematic and Evolutionary Microbiology, 60(5): 1031-1037.
Go to original source...
- VOS, P., GARRITY, G., JONES, D., KRIEG, N. R., LUDWIG, W., RAINEY, F. A., SCHLEIFER, K.-H. and WHITMAN, W. (Eds.). 2009. Bergey's Manual of Systematic Bacteriology. Vol. 3: The Firmicutes. 2nd Edition. New York: Springer.
- WANG, H., QI, J., DONG, Y., LI, Y., XU, X. and ZHOU, G. 2017. Characterization of attachment and biofilm formation by meat-borne Enterobacteriaceae strains associated with spoilage. LWT - Food Science and Technology, 86: 399-407.
Go to original source...
- WANG, H., ZHANG, X., ZHANG, Q., XINGLIAN, K. Y. and ZHOU, X. G. 2015. Comparison of microbial transfer rates from Salmonella spp. biofilm growth on stainless steel to selected processed and raw meat. Food Control, 50: 574-580.
Go to original source...
- WHITMAN, W. et al. (Eds.). 2012. Bergey's Manual of Systematic Bacteriology. Vol. 5: The Actinobacteria. 2nd Edition. New York: Springer.
- WICKRAMASINGHE, N. N., RAVENSDALE, J., COOREY, R., CHANDRY, S. P. and DYKES, G. A. 2019. The Predominance of Psychrotrophic Pseudomonads on Aerobically Stored Chilled Red Meat. Comprehensive Reviews in Food Science and Food Safety, 18(5): 1622-1635.
Go to original source...
- XIANQIN, Y., WANG, H., HE, A. and TRAN, F. 2018. Biofilm formation and susceptibility to biocides of recurring and transient Escherichia coli isolated from meat fabrication equipment. Food Control, 90: 205-211.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.