Acta Univ. Agric. Silvic. Mendelianae Brun. 2020, 68(5), 821-830 | DOI: 10.11118/actaun202068050821

Comparison of the Accuracy of Methods for Calculating the Volume of Standing European Beech Trees

Michal Daniš, Jindřich Neruda
Department of Engineering, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

The paper presents results of the analysis of the accuracy of calculating the volume of standing trees, calculated according to the method used in forestry practice, based on the principle of full calipering of all marked trees with the following calculation of mean height and standing volume according to the method of uniform volume curves. This volume was compared with the exact method for calculating the volume of actual removals including small wood in the beech stands of Little Carpathians in the territory of Lesy Slovenskej republiky, š.p. (Forests of the Slovak Republic, State Enterprise), branch establishment in Smolenice. The values of marked felling (standing trees) and the values of removals including logging residues left on the site will be compared and the difference expressed in percent. The difference between the values in percent is fitted with the accuracy of calculated standing volume (marked logging) established by the author of the method for calculating uniform volume curves, i.e. Halaj. A model curve is chosen by means of the directly detected value of mean stand quantity (mean height, mean diameter, age, site class etc.). The system of uniform volume curves links up with these quantities and gives volumes of individual trees for all diameter classes and corresponding heights. The method of uniform volume curves is used in Slovakia to calculate the volume of marked logging. Results of the analysis show that the volume of standing trees calculated according to the method of uniform volume curves is in reality underestimated by about 5% as compared with the actual volume of processed wood mass including logging residues left on the site. Thus, the calculation inaccuracy in forestry practice is exceeded by the above mentioned 5% as compared with the permitted deviation established through the method of uniform volume curves. Solution of this problem is a proposal submitted to the National Forest Centre in Zvolen for the elaboration of volume tables for the new ecotype of European beech.

Keywords: cubing tables, logging, volume of marked felling, calculation accuracy

Received: September 17, 2020; Accepted: October 13, 2020; Published: November 1, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Daniš, M., & Neruda, J. (2020). Comparison of the Accuracy of Methods for Calculating the Volume of Standing European Beech Trees. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis68(5), 821-830. doi: 10.11118/actaun202068050821
Download citation

References

  1. ASSMANN, E. 1968. Theory of forest yield [in Slovak: Náuka o výnose lesa]. Bratislava: Príroda.
  2. ARAVANOPOULOS, F. A. 2016. Breeding of fast growing forest tree species for biomass production in Greece. Biomass & Bioenergy, 34(11): 1531-1537. DOI: 10.1016/j.biombioe.2010.06.012 Go to original source...
  3. BRACK, C. L. 2001. Forest Measurement and Modeling - Measuring trees, stands and forests for effective forest management. Computer-based course resources for Forest Measurement and Modeling (FSTY2009) at the Australian National University.
  4. FERNANDEZ-PURATICH, H., OLIVER-VILLANUEVA, J.-V., LERMA-ARCE, V. et al. 2017. A study of Paulownia spp. as a short-rotation forestry crop for energy uses in Mediterranean conditions [in Spanish: Estudio de Paulownia spp. como cultivo forestal de rotación corta para fines energéticos en condiciones mediterráneas]. Madera y Bosques, 23(3): 15-27. DOI: 10.21829/myb.2017.2331416 Go to original source...
  5. HALAJ, J. 1955. Tables of uniform mass curves for determining the mass of stands [in Slovak: Tabuľky jednotných hmotových kriviek pre určovanie hmoty porastov]. Bratislava: State Agricultural Publishing House n. p.
  6. HAN, S-K. and MURPHY, G. 2011. Trucking Productivity and Costing Model for Transportation of Recovered Wood Waste in Oregon. Forest Products Journal, 61(7): 552-560. DOI: 10.13073/0015-7473-61.7.552 Go to original source...
  7. HEINIMANN, R. 1999. Ground-based harvesting technologies for steep slopes. In: Proceedings of the International Mountain Logging and 10th Pacific Northwest Skyline Symposium. Corvallis, OR: Department of Forest Engineering, Oregon State University, pp. 1-16.
  8. HUBAČ, K. 1982. Dedrometric methods [in Slovak: Dendrometria]. Textbook. Zvolen: VŠLD Zvolen.
  9. JOHANSSON, J., LISS, J-E., GULLBERG, T. and BJORHEDEN, R. 2006. Transport and handling of forest energy bundles-advantages and problems. Biomass & Bioenergy, 30(4): 334-341. DOI: 10.1016/j.biombioe.2005.07.012 Go to original source...
  10. JURAČKA, M. 2018. Conversion coefficients of forest harvest residues for spruce and pine trees [in Czech: Převodní koeficienty lesních těžebních zbytků pro dřeviny smrk a borovice]. Diploma thesis. Brno: Mendel University in Brno.
  11. KARJALAINEN, T., ZIMMER, B., BERG, S., WELLING, J., SCHWAIGER, H., FINÉR, L. and CORTIJO, P. 2001. Energy, carbon and other material flows in the Life Cycle Assessment of forestry and forest products. Achievements of the Working Group 1 of the COST Action E9. Discussion Paper 10. Joensuu: European Forest Institute.
  12. KARLSSON, K. and TAMMINEN, P. 2013. Long-term effects of stump harvesting on soil properties and tree growth in Scots pine and Norway spruce stands. Scandinavian Journal of Forest Research, 28(6): 550-558. DOI: 10.1080/02827581.2013.805808 Go to original source...
  13. KATÓ, F. and MÜLDER, D. 1983. Qualitative Gruppendurchforstung der Buche. Allgemeine Forst und Jagdzeitung, 154: 139-145.
  14. KLVAČ, R. and DELVIN, G. 2011. Forest Biomass Processing Glossary. 1st Edition. Prague: Lesnická práce, s. r. o.
  15. KORSMO, H. 1995. Weight equations for determining biomass fractions of young hardwoods from natural regenerated stands. Scand. J. For. Res., 10: 333-346. DOI: 10.1080/02827589509382900 Go to original source...
  16. LAITILA, J., KILPONEN, M. and NUUTINEN, Y. 2013. Productivity and Cost-Efficiency of Bundling Logging Residues at Roadside Landing. Croatian Journal of Forest Engineering, 34(2): 175-187.
  17. LAPIN, M., FAŠKO, P., MELO, M., ŠŤASTNÝ, P. and TOMLAIN, J. 2002. Climate areas 1:1 000 000 [in Slovak: Klimatické oblasti]. In: Atlas of the country of the Slovak Republic [in Slovak: Atlas krajiny Slovenskej republiky]. Bratislava: MŽP SR and Banská Bystrica: SAŽP.
  18. LAZDIŅŠ, A., KALĒJA, S. and ZIMELIS, A. 2014. Factors affecting productivity and cost of solid biofuel in mechanized forest ditch cleaning. Research for Rural Development, 2: 90-96.
  19. LIU, C. and WESTMAN, C. J. 2009. Biomass in a Norway spruce-Scots pine forest: a comparison of estimation methods. Boreal Env. Res., 14(5): 875-888.
  20. MOSKALIK, T., SADOWSKI, J. and ZASTOCKI, D. 2016. Some technological and economic aspects of logging residues bundling. Sylwan, 160(1): 31-39.
  21. NAIMI, L. J., COLLARD, F., BI, X., LIM, C. J. and SOKHANSANJ, S. 2016. Development of size reduction equations for calculating power input for grinding pine wood chips using hammer mill. Biomass Conversion and Biorefinery, 6: 397-405. DOI: 10.1007/s13399-015-0195-1 Go to original source...
  22. NATOV, P., DVOŘÁK, J., SEDMÍKOVÁ, M., LÖWE, R. and FERENČÍK, M. 2017. Comparison of harvester-produced timber volume with the standing timber volume determined by volume tables. Zprávy lesnického výzkumu, 62(1): 1-6.
  23. POLJANEC A. and KADUNC A. 2013. Quality and timber value of European beech (Fagus sylvatica L.) trees in the Karavanke region. Croatian Journal of Forest Engineering, 34(1): 151-165.
  24. RAHMAN, A., KHANAM, T. and PELKONEN, P. 2017. People's knowledge, perceptions, and attitudes towards stump harvesting for bioenergy production in Finland. Renewable & Sustainable Energy Reviews, 70: 107-116. DOI: 10.1016/j.rser.2016.11.228 Go to original source...
  25. RANIUS, T., HAMALAINEN, A., EGNELL, G., OLSSON, B., EKLOF, K., STENDAHL, J., RUDOLPHI, J., STENS, A. and FELTON, A. 2018. The effects of logging residue extraction for energy on ecosystem services and biodiversity: A synthesis. Journal of Environmental Management, 70: 409-425. DOI: 10.1016/j.jenvman.2017.12.048 Go to original source...
  26. RECCHIA, L., DAOU, M., RIMEDIOTTI, M., CINI, E. and VIERI, M. 2016. New shredding machine for recycling pruning residuals. Biomass & Bioenergy, 33(1): 149-154. DOI: 10.1016/j.biombioe.2008.05.003 Go to original source...
  27. SCHWEIER, J., MOLINA-HERRERA, S. and GHIRARDO, A. 2016. Environmental impacts of bioenergy wood production from poplar short-rotation coppice grown at a marginal agricultural site in Germany. Global Change Biology Bioenergy, 9(7): 1207-1221. DOI: 10.1111/gcbb.12423 Go to original source...
  28. SNALL, T., JOHANSSON, V., JONSSON, M., ORTIZ, C., HAMMAR, T., CARUSO, A., SVENSSON, M. and STENDAHL, J. 2017. Transient trade-off between climate benefit and biodiversity loss of harvesting stumps for bioenergy. Global Change Biology Bioenergy, 9(12): 1751-1763. DOI: 10.1111/gcbb.12467 Go to original source...
  29. STUPAK, A., ASIKAINEN, A., JONSEL, M., KARLTUN, E. and LUNNAN, A. 2007. Sustainable utilization of forest biomass for energy. Possibilities and problems: policy, legislation, certification and recommendations and guidelines in the Nordic, Baltic and Other European countries. Biomass and Bioenergy, 31(10): 666-684. DOI: 10.1016/j.biombioe.2007.06.012 Go to original source...
  30. ŠMELKO, Š. 2007. Dendrometric methods [in Slovak: Dendrometria]. Zvolen: Technical University of Zvolen.
  31. LESY SR. 2018. WebLES 2: Lesy SR information system [in Slovak: WebLES 2: Informačný systém Lesy SR]. [Intranet]. Available at: https://intranet.lesy.sk/Foresta/WebLES/ [Accessed: 2018, April 23].

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.