Acta Univ. Agric. Silvic. Mendelianae Brun. 2017, 65(2), 641-652 | DOI: 10.11118/actaun201765020641

The Potential of Dynamic Indicator in Development of the Bankruptcy Prediction Models: the Case of Construction Companies

Michal Karas, Mária Režňáková
Department of Finances, Faculty of Business and Management, Brno University of Technology, Kolejní 2906/4, 612 00 Brno, Czech Republic

The current development of bankruptcy models usually goes in the direction of testing different classification algorithms, while the potential hidden in financial indicators is given less attention. Their analysis is often only restricted to the comparison between their respective statuses in bankrupt and healthy companies, while the dynamics of the indicators, i.e. the change in their values in time, is not paid much attention. The aim or our research is to analyse partial potential of financial ratios for predicting bankruptcy. Twenty-eight indicators were examined in a sample of 1,355 construction companies operating in the Czech Republic, as well as their development over the past five periods. A non-parametric chi-square test was used to evaluate the significance of predictors. The variables were categorised for the application of the test. Our research confirmed the assumption as to the importance of using the indicators in dynamic (change) form. Indicators that are significant only in their change form were identified. Moreover, the use of the dynamic form of the indicators can increase the significance of the bankruptcy model. This was tested by using the stepwise version of linear discrimination analysis.

Keywords: construction companies, bankruptcy prediction, financial ratio, dynamic indicators, linear discrimination analysis, model accuracy

Prepublished online: April 30, 2017; Published: May 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Karas, M., & Režňáková, M. (2017). The Potential of Dynamic Indicator in Development of the Bankruptcy Prediction Models: the Case of Construction Companies. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis65(2), 641-652. doi: 10.11118/actaun201765020641
Download citation

References

  1. ALTMAN, E. I. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4): 589 - 609. DOI: 10.1111/j.1540-6261.1968.tb00843.x Go to original source...
  2. AZIZ, M. and DAR, H. 2006. Predicting corporate bankruptcy: where we stand? Corporate Governance, 6(1): 18 - 33. DOI: 10.1108/14720700610649436 Go to original source...
  3. BACK, B., LAITINEN, T. and SERE, K. 1966. Neural networks and genetic algorithms for bankruptcy predictions. Expert systems with applications, 11(4): 407 - 413. DOI: 10.1016/S0957-4174(96)00055-3 Go to original source...
  4. BARRIE, D. S. and PAULSON, B. C. 1992. Professional construction management: including CM, design-construct, and general contracting. 3rd edition. Hightstown: McGraw-Hill.
  5. BEAVER, W. H. 1966. Financial ratios as predictors of failure. Journal of accounting research. Empirical research in accounting: selected studies, 4(1): 71 - 111. DOI: 10.2307/2490171 Go to original source...
  6. BEAVER, W. H., MCNICHOLS, M. F. and RHIE, J. W. 2005. Have financial statements become less Informative? Evidence from the ability of financial ratios to predict bankruptcy. Review of Accounting studies, 10(1): 93 - 122. DOI: 10.1007/s11142-004-6341-9 Go to original source...
  7. COX, D. R. 1972. Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodological), 34(2): 187 - 220. Go to original source...
  8. DEAKIN, E. B. 1972. A discriminant analysis of predictors of business failure. Journal of accounting research, 10(1): 167 - 179. DOI: 10.2307/2490225 Go to original source...
  9. DING, Y., SONG, X. and ZEN, Y. 2008. Forecasting financial condition of Chinese listed companies based on support vector machine. Expert systems with application, 34(4): 3081-3089. DOI: 10.1016/j.eswa.2007.06.037 Go to original source...
  10. EL KHOURY, R. and AL BEAÏNO, R. 2014. Classifying manufacturing firms in Lebanon: An application of Altman's model. Procedia - social and behavioral sciences, 109(8): 11 - 18. Go to original source...
  11. FISHER, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of human genetics, 7(2): 179-188. Go to original source...
  12. GORDINI, N. 2014. A genetic algorithm approach for SMEs bankruptcy prediction: Empirical evidence from Italy. Expert systems with applications, 41(14): 6433-6445. DOI: 10.1016/j.eswa.2014.04.026 Go to original source...
  13. GRICE, J. S. and DUGAN, M. T. 2001. The limitations of bankruptcy prediction models: Some cautions for the researchers. Review of quantitative finance and accounting, 17(2): 151 - 166. DOI: 10.1023/A:1017973604789 Go to original source...
  14. HASTIE, T., TIBSHIRANI, R. and FRIEDMAN. J. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer. Go to original source...
  15. HEO, J. and YANG, J. Y. 2014. AdaBoost based bankruptcy forecasting of Korean construction companies. Applied soft computing, 24(1): 494-499. DOI: 10.1016/j.asoc.2014.08.009 Go to original source...
  16. HENERBY, K. L. 1996. Do cash flows variables improve the prediction accuracy of a Cox proportional hazards model for bank failure? The quarterly review of economics and finance, 36(3): 395 - 409. Go to original source...
  17. HINDLS, R., HRONOVÁ, and S., NOVÁK, I. 2000. The Methods of Statistical Analysis for the Economists [in Czech: Metody statistické analýzy pro ekonomy]. 2nd edition. Praha: Management Press
  18. HEBÁK, P., HUSTOPECKÝ, J. JAROŠOVÁ, E. and PECÁKOVÁ, I. 2004. Multivariate Statistical Methods [in Czech: Vícerozměrné statistické metody]. Praha: Informatorium.
  19. HUNG, C. and CHEN, J. H. 2009. A selective ensemble based on expected probabilities for bankruptcy prediction. Expert systems with applications, 36(3): 5297 - 5303. DOI: 10.1016/j.eswa.2008.06.068 Go to original source...
  20. CHANDRAPALA, P. and KNÁPKOVÁ, A. 2013. Firm-specific factors and financial performance of firms in the Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(7): 2183-2190 DOI: 10.11118/actaun201361072183 Go to original source...
  21. CHENG, C. B., CHEN, C., L. and FU, C. J. 2006. Financial distress prediction by a radial basis function network with logit analysis learning. Computers and mathematics with applications, 51(3 - 4): 579 - 588. DOI: 10.1016/j.camwa.2005.07.016 Go to original source...
  22. KARAS, M. and REŽŇÁKOVÁ, M. 2013a. Bankruptcy prediction model of industrial enterprises in the Czech Republic. International journal of mathematical models and methods in applied sciences, 7(5): 519 - 531.
  23. KARAS, M.; REŽŇÁKOVÁ, M. 2013b. Identification of financial signs of bankruptcy: A case of industrial enterprises in the Czech Republic. In: Proceedings of the 6th International Scientific Conference: Finance and the performance of firms in science, education, and practise. Zlín: Tomas Bata University, 324 - 335.
  24. KIM, M. J., and KANG, D. K. 2010. Ensemble with neural networks for bankruptcy prediction. Expert systems with applications, 37(4): 3373-3379. DOI: 10.1016/j.eswa.2009.10.012 Go to original source...
  25. KUBĚNKA, M. and KRÁLOVÁ, V. 2013. Use of Z" score in evaluating the financial health of the construction sector. [in Czech: Využití Z" score při hodnocení finančního zdraví odvětví stavebnictví]. E + M Ekonomie a Management, 16(1): 101- 112.
  26. LAITINEN, E. K., LUKASON, O. and SUVAS, A. 2014. Behaviour of Financial Ratios in Firm Failure Process: An International Comparison. International journal of finance and accounting, 3(2): 122 - 131.
  27. LI, J. and RAGOZAR, R. 2012. Application of the Z-Score model with consideration of total assets volatility in predicting corporate financial failures from 2000 - 2010. Journal of accounting and finance, 12(2): 11 - 19.
  28. LI, H., and SUN, J. 2009. Predicting financial failure using multiple case-based reasoning combine with support vector machine. Expert systems with applications, 36(6): 10085-10096. DOI: 10.1016/j.eswa.2009.01.013 Go to original source...
  29. LIN, F., LIANG, D. and CHEN, E. 2011. Financial ratio selection for business crisis prediction. Expert systems with applications, 38(12): 15094-15102. DOI: 10.1016/j.eswa.2011.05.035 Go to original source...
  30. NEUMAIEROVA, I., and NEUMAIER, I. 2005. Index IN05. In: Sborník příspěvků mezinárodní vědecké konference "Evropské finanční systémy". Brno, 21. - 23. 6. 2004. Brno: Ekonomicko-správní fakulta Masarykovy university v Brně, 143 - 148.
  31. NIEMANN, M., SCHMIDT, J. H., and NEUKIRCHEN, M. 2008. Improving performance of corporate rating prediction models by reducing financial ratio heterogeneity. Journal of banking and finance, 32(3): 434-446. DOI: 10.1016/j.jbankfin.2007.05.015 Go to original source...
  32. OHLSON, J. A. 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 18(1): 109 - 131. DOI: 10.2307/2490395 Go to original source...
  33. PLATT, D. H. and PLATT, M. B. 1990. Development of a class of stable predictive variables: the case of bankruptcy prediction. Journal of Business Finance and Accounting, 17(1): 31 - 51. DOI: 10.1111/j.1468-5957.1990.tb00548.x Go to original source...
  34. PSILLAKI, M., TSOLAS, I. T. and MARGARITIS, M. 2010. Evaluation of credit risk based on firm performance. European journal of operational research, 201(3): 873-881. DOI: 10.1016/j.ejor.2009.03.032 Go to original source...
  35. SATISH, Y. M. and JANAKIRAM, B. 2011. Turnaround strategy using Altman model as a tool in solar water heater industry in Karnataka. International journal of business and management, 6(1): 199 - 206. Go to original source...
  36. SHUMWAY, T. 2001. Forecasting bankruptcy more accurately: A simple hazard model. Journal of business, 74(1): 101 - 24. DOI: 10.1086/209665 Go to original source...
  37. STEHLIKOVA, A. 2013. Development of insolvency proposals in 2008 - 2012 in the context of macroeconomic indicators of The Czech Republic. In: Proceedings of the international scientific conference Insolvency 2013 - The end of one phase, beginning of another one? Prague: Czech National Bank, 103 - 112.
  38. SUN, J., LIAO, B. and LI, H. 2013. AdaBoost and bagging ensemble approaches with neural network as base learner for financial distress prediction of Chinese construction and real estate companies. Recent patents on computer science, 6(1): 47 - 59. DOI: 10.2174/2213275911306010007 Go to original source...
  39. SVOBODOVA, L. 2013. Development in the insolvency procedure in the Czech Republic. Ekonomika a management, 7(1): 39 - 50.
  40. ŠPIČKA, J. 2013. The financial condition of the construction companies before bankruptcy. European journal of business and management, 5(23): 160 - 166.
  41. THOMAS, N, S., WONG, J. M. W. and ZHANG, J. 2011. Applying Z-score model to distinguish insolvent construction companies in China. Habitat international, 35(4): 599 - 607. DOI: 10.1016/j.habitatint.2011.03.008 Go to original source...
  42. TIAN, S., YU, Y., and GUO, H. 2015. Variable selection and corporate bankruptcy forecasts. Journal of banking and finance, 52(1): 90 - 100. DOI: 10.1016/j.jbankfin.2014.12.003 Go to original source...
  43. TSENG, F. M. and HU, Y. C. 2010. Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks. Expert systems with applications, 37(4): 1846-1853. DOI: 10.1016/j.eswa.2009.07.081 Go to original source...
  44. TSERNG, H. P., CHEN, P., HUANG, W. H., LEI, M. CH. and TRAN, Q. H. 2014. Prediction of default probability for construction firms using the logit model. Journal of civil engineering and management, 20(2): 247-255. DOI: 10.3846/13923730.2013.801886 Go to original source...
  45. WANG, Y. J. and LEE, H. S. 2008. A clustering method to identify representative financial ratios. Information Sciences, 178(4): 1087 - 1097. DOI: 10.1016/j.ins.2007.09.016 Go to original source...
  46. WU, Y., GAUNT, C. and GRAY, S. (2010). A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting and Economics, 6: 34 - 45. DOI: 10.1016/j.jcae.2010.04.002 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.