Acta Univ. Agric. Silvic. Mendelianae Brun. 2015, 63(3), 1031-1042 | DOI: 10.11118/actaun201563031031

Exploring Consumer Behavior: Use of Association Rules

Pavel Turčínek1, Jana Turčínková2
1 Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
2 Department of Marketing and Trade, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

This paper focuses on problematic of use of association rules in exploring consumer behavior and presents selected results of applied data analyses on data collected via questionnaire survey on a sample of 1127 Czech respondents with structure close to representative sample of population the Czech Republic. The questionnaire survey deals with problematic of shopping for meat products. The objective was to explore possibilities of less frequently used data-mining techniques in processing of customer preference.
For the data analyses, two methods for generating association rules are used: Apriori algorithm and FP-grow algorithm. Both of them were executed in Weka software. The Apriori algorithm seemed to be a better tool, because it has provided finer data, due to the fact that FP-growth algorithm needed reduction of preference scale to only two extreme values, because the input data must be binary. For consumer preferences we also calculated their means.
This paper explores the different preferences and expectations of what customers' favorite outlet should provide, and offer. Customers based on the type of their outlet loyalty were divided into five segments and further explored in more detail. Some of the found best association rules suggest similar patterns across the whole sample, e.g. the results suggest that the respondents for whom a quality of merchandise is a very important factor typically also base their outlet selection on freshness of products. This finding applies to all types of retail loyalty categores. Other rules seem to indicate a behavior more specific for a particular segment of customers. The results suggest that application of association rules in customer research can provide more insight and can be a good supplementary analysis for consumer data exploration when Likert scales were used.

Keywords: knowledge discovery, association rules, Apriori, consumer behavior, marketing research, meat products
Grants and funding:

This work has been supported by the research design of Mendel University in Brno MSM 6215648904/03.

Prepublished online: June 28, 2015; Published: August 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Turčínek, P., & Turčínková, J. (2015). Exploring Consumer Behavior: Use of Association Rules. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis63(3), 1031-1042. doi: 10.11118/actaun201563031031
Download citation

References

  1. AGRAWAL, R., IMIELINSKI, T. and SWAMI, A. 1993. Mining association rules between sets of items in large databases. SIGMOD Record (ACM Special Interest Group on Management of Data), 22(2): 207-216. Go to original source...
  2. ARNOLD, S. J., MA; S. and TIGERT, D. J. 1978. A comparative analysis of determinant attributes in retail store selection. In: HUNT, H. K. (ed.), Advances in Consumer Research, 5: 663-667.
  3. BÁRTA, V., PÁTÍK, L. and POSTLER, M. 2009. Retail marketing. 1st ed. Praha: Management Press.
  4. BÁRTOVÁ, H., BÁRTA, V. and KOUDELKA, J. 2005. Chování spotřebitele a výzkum trhu [Consumer behavior and marketing research]. 2. vyd. Praha: Oeconomika.
  5. BOONE, L. E. and KURT, D. L. 2013. Contemporary Marketing. Mason: Cengage Learning.
  6. BRADLEY, N. 2007. Marketing Research: Tools and Techniques. New York: Oxford University Press.
  7. BRIESCH, R., CHINTAGUNTA, P. and FOX, E. 2009. How does assortment affect grocery store choice? Journal of Marketing research, 46: 176-189. DOI: 10.1509/jmkr.46.2.176 Go to original source...
  8. BRIN, S., RASTOGI, R. and SHIM, K. 2003. Mining optimized gain rules for numeric attributes. IEEE Transactions on Knowledge and Data Engineering, 15(2): 324-338. DOI: 10.1109/TKDE.2003.1185837 Go to original source...
  9. BURKE, R., BARI, R., HARLAM, A. et al. 1992. Comparing dynamic consumer choice in real and computer-simulated environments. Journal of Consumer Research, 19(1): 71-82. DOI: 10.1086/209287 Go to original source...
  10. CARPENTER, J. and MOORE, M. 2006. Consumer demographics, store attributes, and retail format choice in the US grocery market. International Journal of Retail & Distribution Management, 34(6): 434-452. DOI: 10.1108/09590550610667038 Go to original source...
  11. CHALUPOVÁ, N. and MOTYČKA, A. 2008. Situation and trends in trade-supporting information technologies. Acta Univ. Agric. Silvic. Mendelianae Brun., 56(6): 25-36. DOI: 10.11118/actaun200856060025 Go to original source...
  12. DAŘENA, F. 2007. Global architecture of marketing information systems. Agricultural Economics, 52(9): 432-440. Go to original source...
  13. DAŘENA, F. 2008. A research on CRM systems in the Czech Republic. Acta Univ. Agric. Silvic. Mendelianae Brun., 56(3): 29-34. DOI: 10.11118/actaun200856030029 Go to original source...
  14. DAWSON, S., BLOCH, P. H. and RIDWAY, N. M. 1990. Shopping motives, emotional states and retail outcomes. Journal of Retailing, 66(4): 408-427.
  15. FAED, A. and FORBES, D. 2011. Impact of Customer Management System in Improving Customer Retention: Optimization of Negative Customer Feedback. World Academy of Science, Engineering & Technology 72: 171-175. EBSCO. [online]. Accessible at: [2012-02-01].
  16. HAN, J. and KAMBER, M. 2006. Data Mining: Concepts and Techniques. 2nd ed. San Francisco: Morgen Kaufmann Publishers.
  17. HAN, J., PEI, J. and YIN, Y. 2000. Mining frequent patterns without candidate generation. SIGMOD Record (ACM Special Interest Group on Management of Data), 29(2): 1-12. Go to original source...
  18. HAN, J., PEI, J., YIN, Y. et al. 2004. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1): 53-87. DOI: 10.1023/B:DAMI.0000005258.31418.83 Go to original source...
  19. HORÁKOVÁ, H. 2003: Strategic marketing [Strategický marketing]. 1. vyd. Praha: Grada Publishing.
  20. INCOMA GFK, s. r. o. 2012. Incoma.cz Shopper typology 2010. [online]. Accessible at: [2012-04-22].
  21. KENG, K. A., EHRENBERG, A. S. C. 1984. Patterns of store choice. Journal of Marketing Research, 21(4): 399-409. DOI: 10.2307/3151466 Go to original source...
  22. KOTLER, P. 2007: Marketing management. 1st ed. Praha: Grada.
  23. KŘÍ®, J. and DOSTÁL, P. 2010. Database System and Soft Computing. Systémová integrace, 17(4): 17-26.
  24. KŘÍ®, J., KLČOVÁ, H. and SODOMKA, P. 2011. The Use of Business Intelligence Tools for Prediction and Decisionmaking Processes in the Academic Environment: A Case Study. Innoviation and Knowledge Management - A Global Competitive Advantage. In: Proceedings of The 16th International Business Information Management Association Conference. IBIMA. Kuala Lumpur, Malaysia. International Business Information Management Association (IBIMA), 1259-1265.
  25. KNÍ®EK, J., ©INDELÁŘ, J., VOJTĚ©EK, B. et al. 2011. Using markers to aid decision making in diagnostics. International Journal of Tomography and Statistics, 16(11): 41-55.
  26. LO©«ÁKOVÁ, H. 2009. Diferencované řízení vztahů se zákazníky [Differenciated customer relationship management]. Praha: Grada Publishing.
  27. LOUVIERE, J. J. and GEATH, G. J. 1987. Decomposing the determinants of retail facility choice using the method of hierarchical and international comparisons. Journal of Marketing Research, 63(1): 149-157.
  28. MASON, J. B., DURAND, R. M. and TAYLOR, J. L. 1983. Retail patronage: A causal analysis of antecedent factor. In: DARDEN, W. and LUSCH, R. (eds.), Patronage behavior and retail management. pp. 339-352. New York: North-Holland.
  29. MEDINA, S. and WARD, R. W. 1999. A model of Retail Outlet Selection for Beef. International Food and Agribusiness Management Review, 2(2): 195-219. DOI: 10.1016/S1096-7508(00)00021-5 Go to original source...
  30. MILOSAVLJEVIC, M., KOCH, C. and RANGEL, A. 2011. Consumers can make decisions in as a little as a third of a second. Judgment and Decision making, 6: 520-530. Go to original source...
  31. MONROE, K. B. and GUILTINAN, J. P. 1975. A path-analytic exploration of retail patronage influences. Journal of Consumer Research, 2(1): 19-28. DOI: 10.1086/208612 Go to original source...
  32. MORSCHETT, D., SWOBODA, B. and SCHRAMM-KLEIN, H. 2005. Perception of store attributes and overall attitude towards grocery retailers: The role of shopping motives. The international review of Retail, Distribution and Consumer Research, 15: 423-447. DOI: 10.1080/09593960500197552 Go to original source...
  33. NETOPIL, T. and KALÁBOVÁ, J. 2013. Marketing communication: loyalty to grocery stores built on flyers. Journal of International Scientific Publications: Media and Mass Communication, 2(2): 347-356.
  34. NETOPIL, T. 2012. Consumer behaviour of customers on the food market in Czech Republic. [CD-ROM]. In: PEFnet 2012. 1-11.
  35. UUSITALO, O. 2001. Consumer perception of grocery retail formats and brands. International Journal of Retail and Distribution Management, 29(5): 214-225. DOI: 10.1108/09590550110390995 Go to original source...
  36. SINHA, P. K. and BANERJEE, A. 2004. Store choice behavior in an evolving market. International Journal of Retail and Distribution management, 32(10): 482-494. DOI: 10.1108/09590550410558626 Go to original source...
  37. SPIGGLE, S. and SEWALL, M. A. 1987. A choice set model of retail selection. Journal of Marketing, 51(2): 97-111. DOI: 10.2307/1251132 Go to original source...
  38. SUAREZ, A., DEL BOSQUE, I. R., RODRIGUEZ-POO, J. M. et al. 2004. Accounting for heterogeneity in shopping centre choice models. Journal of Retailing and Consumer Services, 11(2): 119-129. DOI: 10.1016/S0969-6989(03)00011-0 Go to original source...
  39. TURČÍNKOVÁ, J., TURČÍNEK, P., MOTYČKA, A. et al. 2014. Exploring How Customers Shop for Meat Products. In: Recent Advances in Economics, Management and Marketing. 1st ed. Cambridge, MA, USA: WSEAS Press.
  40. WEKA, 2013: Weka 3 - Data Mining with Open Source Machine Learning Software in Java. [online]. HTML Document. 2013. Accessible at: http://www.cs.waikato.ac.nz/ml/weka/.[2013-11-28].
  41. WOODSIDE, A. G. and TRAPPEY, R. J. 1992. Finding out why customers shop your store and buy your brand. Journal of Advertising Research, 32(6): 59-78.
  42. ZAKI, M. J. 2000. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, 12(3): 372-390. DOI: 10.1109/69.846291 Go to original source...
  43. ZAMAZALOVÁ, M. 2009. Marketing of a corporate business [Marketing obchodní firmy]. 1. vyd. Praha: Grada Publishing.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.