Acta Univ. Agric. Silvic. Mendelianae Brun. 2008, 56(2), 73-80 | DOI: 10.11118/actaun200856020073
VYUŽITÍ UMĚLÝCH NEURONOVÝCH SÍTÍ PRO KLASIFIKACI SIGNÁLŮ BIOSENZORŮ
- 1 Ústav technologie potravin, Mendelova zemědělská a lesnická univerzita v Brně, Zemědělská 1, 613 00 Brno, Česká republika
- 2 Ústav mikroelektroniky, Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně, Údolní 53, 602 00 Brno, Česká republika
- 3 BVT Technologies, a. s., Hudcova 532/78, 612 00 Brno, Česká republika
V této práci byly aplikovány umělé neuronové sítě pro vyhodnocení signálu při měření pomocí biosenzoru. Ze šesti různých poruch průběhu signálu je možné čtyři z nich (nízká odezva po přídavku substrátu, ustalování ve vysokých hodnotách, pomalé ustalování po přídavku substrátu a malá citlivost na syntostigmin) určit s pravděpodobností více jak 90 %. Pro detekci měření, kdy byla poškozena membrána biosenzoru a tím způsoben vyšší šum měření, byla použitá metoda měření nevhodná. Vlastní umělé neuronové sítě adaptované na tento konkrétní problém mohou být jako program nahrány do mikroprocesoru a být implementovány do přístroje.
umělé neuronové sítě, biosenzor, pesticidy
Use of artificial neural networks in biosensor signal classification
Biosensors are analytical devices that transforms chemical information, ranging from the concentration of a specific sample component to total composition analysis, into an analytical signal and that utilizes a biochemical mechanism for the chemical recognition. The complexity of biosensor construction and generation of measured signal requires the development of new method for signal evaluation and its possible defects recognition. A new method based on artificial neural networks (ANN) was developed for recognition of characteristic behavior of signals joined with malfunction of sensor. New algorithm uses unsupervised Kohonen self-organizing neural networks. The work with ANN has two phases - adaptation and prediction. During the adaptation step the classification model is build. Measured data form groups after projection into two-dimensional space based on theirs similarity. After identification of these groups and establishing the connection with signal disorders ANN can be used for evaluation of newly measured signals. This algorithm was successfully applied for 540 signal classification obtained from immobilized acetylcholinesterase biosensor measurement of organophosphate and carbamate pesticides in vegetables, fruits, spices, potatoes and soil samples. From six different signal defects were successfully classified four - low response after substrate addition, equilibration at high values, slow equilibration after substrate addition respectively low sensitivity on syntostigmine.
Keywords: artificial neural networks, biosensors, pesticides
Received: November 27, 2007; Published: November 14, 2014 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- BACHMANN, T. T., LECA, B., VILATTE, F., MARTY, J. L., FOURNIER, D., SCHMID, R., 2000: Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural network. Biosens. Bioelectron. 15(3-4): 193-201. DOI: 10.1016/S0956-5663(00)00055-5
Go to original source...
- EVTUGYN, G.A., BUDNIKOV, H.C., NIKOLSKAYA, E.B., 1996: Influence of surface-active compounds on the response and sensitivity of cholinesterase biosensors for inhibitor determination. Analyst 121: 1911-1915. DOI: 10.1039/an9962101911
Go to original source...
- FRÍAS, S., CONDE, J. E., RODRÍGUEZ, M. A., DOHNAL, V., PÉREZ-TRUJILLO, J. R., 2002: Metallic content of wines from the Canary Islands (Spain). Application of artificial neural networks to the data analysis. Nahrung/Food, 46: 370-375. ISSN 1521-3803. DOI: 10.1002/1521-3803(20020901)46:53.0.CO;2-F
Go to original source...
- http://www.cnbc.cmu.edu/Resources/PDP++/PDP++.html
- KVASNIČKA, V. A KOL., 1997: Úvod do teórie neurónových sietí, IRIS. ISBN 80-88778-30-1.
- KOHONEN, T., 1995: Self-Organising Maps, Springer, Berlín.
Go to original source...
- MCCLELLAND, J. L., RUMELHART, D. E., 1987: Explorations in Parallel Distributed Processing Handbook. MIT Press.
Go to original source...
- PODLOUCKÁ, L., 2005: Umělé neuronové sítě pro klasifikaci signálů biosenzorů. Bakalářská práce. FELT VUT v Brně, Brno.
- RECHNITZ, G. A., 1991: Biosensors into the 1990s. Electroanalysis, 3: 73-76. ISSN 1521-4109. DOI: 10.1002/elan.1140030202
Go to original source...
- SEEMANN, J., RAPP, F. R., ZELL, A., GAUGLITZ, G., 1997: Classical and modern algorithms for the evaluation of data from sensor-arrays. Fres. J. Anal. Chem. 359: 100-106. DOI: 10.1007/s002160050543
Go to original source...
- SKLÁDAL, P., MASCINI, M., 1992: Sensitive detection of pesticides using amperometric sensors based on cobalt phatlocyanin-modified composite electrodes and immobilized cholinesterases. Biosens. Bioelectron. 7, 335-343. DOI: 10.1016/0956-5663(92)85029-A
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.