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Abstract

Mid-infrared (MIR) spectroscopy is the method of choice for the standard milk recording system, 
to determine milk components including fat, protein, lactose and urea. Since milk composition is 
related to health and metabolic status of a cow, MIR spectra could be potentially used for disease 
detection. In dairy production, mastitis is one of the most prevalent diseases. The aim of this study 
was to develop a calibration equation to predict mastitis events from routinely recorded MIR spectra 
data. A further aim was to evaluate the use of test day somatic cell score (SCS) as covariate on the 
accuracy of the prediction model. The data for this study is from the Austrian milk recording system 
and its health monitoring system (GMON). Test day data including MIR spectra data was merged 
with diagnosis data of Fleckvieh, Brown Swiss and Holstein Friesian cows. As prediction variables, 
MIR absorbance data after first derivatives and selection of wavenumbers, corrected for days in 
milk, were used. The data set contained roughly 600,000 records and was split into calibration and 
validation sets by farm. Calibration sets were made to be balanced (as many healthy as mastitis 
cases), while the validation set was kept large and realistic. Prediction was done with Partial Least 
Squares Discriminant Analysis, key indicators of model fit were sensitivity and specificity. Results 
were extracted for association between spectra and diagnosis with different time windows (days 
between diagnosis and test days) in validation. The comparison of different sets of predictor 
variables (MIR, SCS, MIR + SCS) showed an advantage in prediction for MIR + SCS. For this prediction 
model, specificity was 0.79 and sensitivity was 0.68 in time window -7 to +7 days (calibration and 
validation). Corresponding values for MIR were 0.71 and 0.61, for SCS they were 0.81 and 0.62. In 
general, prediction of mastitis performed better with a shorter distance between test day and mastitis 
event, yet even for time windows of -21 to +21 days, prediction accuracies were still reasonable, 
with sensitivities ranging from 0.50 to 0.57 and specificities remaining unchanged (0.71 to 0.85). 
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Additional research to further improve prediction equation, and studies on genetic correlations 
among clinical mastitis, SCS and MIR predicted mastitis are planned. 
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INTRODUCTION
This study is part of the project D4dairy, the 

overall goal of which is to provide digital support 
to dairy management by a data-driven, networked 
information system, exploiting the potential of 
advanced technologies and data analysis to further 
improve animal health, nutrition, animal welfare 
and product quality (D4Dairy Consortium, 2019). 
A subarea of D4dairy is disease detection using Mid-
infrared (MIR) milk spectral data. MIR spectroscopy 
is a method of choice for standard milk recording 
systems to measure milk contents including fat, 
protein, lactose and urea. Besides, MIR spectra data 
could be used to predict other milk components 
(De Marchi et  al., 2014). Because it is well known 
that the composition of milk is related to the health 
and metabolic status of the cow, its changes can be 
potential indicators (e. g. Hamann and Krömker, 
1997). In recent years, MIR spectra data have been 
used to predict different variables of interest, such 
as fatty acid composition of milk (Soyeurt et  al., 
2006; 2011), methane emissions (Vanlierde et  al., 
2015), feed intake (Wallén et  al., 2018), energy 
intake and efficiency (McParland et  al., 2014) or 
ration composition (Klaffenböck et al., 2016). There 
are several studies on health traits and diseases, e.g. 
subclinical ketosis (De Roos et al., 2007) and clinical 
ketosis (Belay et  al., 2016), mastitis (Soyeurt et  al., 
2011; Dale and Werner, 2017) and lameness (Mineur 
et al., 2017). The focus of this study was on detection 
of mastitis, which is one of the most prevalent 
diseases in dairy production. Mastitis diseases 
cause economic harm due to milk losses, costs for 
veterinarians, earlier culling and not least, affects 
the animal welfare (Halasa et  al., 2007; Heikkilä 
et  al., 2012; Guimarães et  al., 2017). MIR spectra 
analysis could be an extra tool, additionally to 
somatic cell count (SCC) and veterinarian diagnosis, 
for mastitis prediction, to further improve genetic 
evaluation of the trait ‘Udder health’, or to provide 
farmers with a management tool. The main aim of 
this study was to develop a calibration equation 
to predict mastitis events from routinely recorded 
MIR spectra data. We further aimed to evaluate 
the effect of different calibration settings and the 
use of somatic cell score (SCS) as covariate on the 
sensitivity and specificity of the prediction model.

MATERIALS AND METHODS
The data for this study was from the Austrian milk 

recording system and its health monitoring system 
(GMON), for the period of July 2014 to December 
2018 and was provided by Zuchtdata GmbH. 

The test day milk data consisted of information 
on breed, herd, region, calving date, parity, days 
in milk, milk yield, somatic cell count (SCC), fat, 
protein and MIR spectra data for the respective test 
days. The GMON data included recorded mastitis 
diagnosis for acute and chronic mastitis, where 
both were used equally for the prediction model. All 
data (test day and GMON) used in this study were 
derived from validated farms with complete data 
recording. Merging of the data sets and primary 
data preparation were done in SAS (SAS Institute 
Inc., 2017). Mastitis diagnoses were linked with 
‘adjacent’ milk recording test days. Test day records 
in the range of 21 days before and 21 days after 
diagnosis were considered as mastitis cases. For 
the healthy group, only spectra from cows without 
mastitis diagnosis 21 days before and 30 days after 
test day were used. Test day records of Fleckvieh, 
Brown Swiss and Holstein Friesian cows between 
3 and 305 days of lactation were included. Tab.  I 
shows the number of records of final the data set.

MIR spectra consist of 1,060 data points, which are 
the absorbance values of infrared light at different 
wavenumbers (925.66 cm-1 to 5010.16  cm- 1). 
MIR  spectra from different instruments and 
different periods were previously standardized into 
a common basis (Grelet et  al., 2015). According to 
Grelet et al. (2016), selected parts of the spectra were 
used for the prediction model: 968.1 to 1,577.5 cm- 1, 
1,731.8 to 1,762.6 cm-1, 1,781.9 to 1,808.9 cm- 1, 
and 2,831.0 to 2,966.0 cm-1. These spectra areas 
(212  data points) contain most of the information, 
whilst other areas are ‘noisy‘, because of strong 
water absorbance or not repeatable among MIR 

I: Records of the final data set

Variables Number of records

Farms 7,914

Animals (Cows): 69,028

•	 Fleckvieh 52,287

•	 Brown Swiss 7,260

•	 Holstein Friesian 9,481

Test day records 635,588

healthy 627,593

mastitis: 7,995

•	 acute 5,644

•	 chronic 2,351
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instruments. Before selecting the specific areas, first 
derivative (dx(n) = x(n) - x(n + 4)) of full spectra was 
taken. 

Further data preparation was done in Rstudio 
(R  Development Core Team, 2008). The 212 
selected spectra variables were corrected for days 
in milk (DIM), according to Vanlierde et al. (2015): 
Each first derivative value of the selected spectra 
was multiplied by a constant (i.e., 1), a linear 
(√3 × x) and a quadratic [√5/4 ×  (3x²  - 1)] modified 
Legendre polynomial (Gengler et  al., 1999), where 
x =  -  1  +  2[(DIM  -  3)/(305  -  3)]. This modification 
resulted in 636 (212 constant, 212 linear, 212 
quadratic) spectra variables, which were finally 
used for the prediction model. The somatic cell 
count (SCC) was logarithmically transformed to the 
somatic cell score (SCS), by applying the formula: 
SCS = log2 (SCC/100,000) + 3 (Fürst et al., 2016).

The 635,588 records of the complete data set 
where randomly split by farm into half a calibration 
(train) and half a validation (test) data set. In this 
way, cows in the validation set were from different 
herds than those in the calibration set. In final 
calibration data sets, the numbers of healthy and 
mastitis cases were always balanced (1:1) by using 
random down sampling. Further, different settings 
were applied on the calibration set for testing 
various factors.

The first objective was to test the effect of SCC 
restrictions for mastitis diagnosis in calibration: 
Animals were considered as healthy, if Diagnosis = 0 
and SCC <= 100,000; animals were considered to 
have mastitis, if Diagnosis = 1 and SCC >=400,000. 
Observations that did not fulfill these conditions 
were deleted. Another subset was created without 
SCC restrictions. This comparison was done for 
all model tests. The second aim was to compare 
different sets of predictor variables: MIR (636 
DIM corrected spectral data points), SCS alone 
and MIR plus SCS as covariate. For all calibration 
subsets, the maximum days between diagnosis 
and test day were set to -7 to +7 days, according to 
Soyeurt et  al. (2012). In validation, mastitis cases 
with maximum -21 to +21 days between diagnosis 
and test day were considered. In order to have a 
realistic validation data set, no further settings or 
restrictions were applied. The results of validation 
(Tab. III) are displayed for the overall time window 
of -21 to +21 days and additionally split for different 
shorter time windows. This was to demonstrate the 

difference in prediction of mastitis cases, if test day 
is before or after mastitis event and how accuracy 
of prediction changes with the distance of days 
between mastitis event and test day.

Prediction was done with Partial Least Squares 
Discriminant Analysis (PLS-DA), using the R package 
‘caret’ (Kuhn, 2008). The indicators of model fit 
were sensitivity (mastitis cases correctly assigned 
as mastitis), specificity (healthy cases correctly 
assigned as healthy) and balanced accuracy (mean 
of sensitivity and specificity). The number of latent 
variables used in the prediction models was 50, 
based on preliminary tests. When just SCS was used 
as predictor variable, the number of latent variables 
was set to one.

We chose to run 20 replications per setting. Given 
a standard deviation of 0.017 for replicates, that 
allowed to detect significance at a p-value of 0.05 for 
differences of around 0.015. Sample size calculator 
(https://www.stat.ubc.ca/~rollin/stats/ssize/n2.html) 
was used. 

RESULTS
For testing the effect of different predictor 

variables (MIR, SCS, MIR + SCS), the number of 
records was on average 2,340 (1,170 mastitis, 
1,170 healthy) for the calibration sets without SCC 
limits, and 1,086 (543 mastitis, 543 healthy) for the 
calibration sets with SCC limits. Thus, applying SCC 
limits reduced the size of the calibration set roughly 
to half.

Tab. II displays the results of PLS-DA procedure in 
calibration set. For the different predictor variables 
(MIR, SCS, MIR + SCS), sensitivity, specificity and 
balanced accuracy was higher in the calibration set 
with SCC limits. For SCS and MIR + SCS all indicators 
were 1, for MIR alone sensitivity was 0.84 and 
specificity 0.89. In the calibration set without SCC 
limits, sensitivities and specificities were lower for 
all types of models. 

Tab.  III shows the results of model testing for 
the validation set. All the results were for the 
full validation set (-21 to +21 days). Splitting it 
into different shorter time windows changed the 
number of mastitis cases, but not the number of 
healthy cases. Therefore, specificities of different 
time windows did not differ from specificity of 
the overall time window. Differences in balanced 
accuracy resulted from changing sensitivity.

II: Results in calibration (train) for different predictor variables (MIR, SCS or MIR + SCS); with and without SCC limits in train

Predictor
variable

no SCC limits in train SCC limits in train

sens. spec. bal.acc. sens. spec. bal.acc.

MIR 0.680 0.770 0.725 0.843 0.886 0.864

SCS 0.617 0.849 0.733 1.000 1.000 1.000

MIR + SCS 0.735 0.838 0.786 1.000 1.000 1.000
sens. = sensitivity; spec. = specificity; bal.acc. = balanced accuracy
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Applying SCC limits in calibration did not lead to 
a higher balanced accuracy in validation, compared 
to prediction equations derived from calibration 
data sets without SCC limits (Tab. II). For all models, 
specificity was higher with SCC limits, but sensitivity 
was lower. The differences in sensitivity (all time 
windows) and specificity were significant for MIR 
and MIR + SCS. Without SCC limits sensitivity and 
specificity were more balanced and balanced 
accuracy was slightly higher for all variants, except, 
SCS (-21 to +21 days), SCS (-21 to -15 days), SCS (-7 to 
+7 days) and MIR + SCS (-14 to -8 days). 

Comparing the different predictor variables 
in the models without SCC limits in calibration 
gave the following results: Overall sensitivity was 
significantly higher for MIR, but overall specificity 
was significantly higher for SCS. For the individual 
time windows (except -14 to -8 days), the highest 
balanced accuracies were found for MIR + SCS. 
For the comparison of predictor variables with 
SCC limits in calibration, specificity was highest for 
MIR + SCS (0.88) and lowest for MIR alone (0.76) for 
the -21 to +21 days time window. For the overall 
validation set, the highest sensitivity (0.49) was also 
reached by SCS alone. With regard to the individual 
time windows, sensitivity of SCS was the highest 
(significantly) for -7 to +7 days, -14 to -8 days and 

-21 to -15 days, but for +15 to +21 days and +8 to 
+14 days it was highest (significantly) for MIR alone.

DISCUSSION
Considering the results for calibration data sets, 

the sensitivity and specificity of 1.00 for predictor 
variables SCS and MIR + SCS, and also high values 
for MIR alone, when using SCC limits, are due to 
overfitting of the model. Applying the particular 
model on the realistic validation set did not show 
an advantage of using SCC limits in calibration. 
It resulted in a higher imbalance of sensitivity 
and specificity and a lower balanced accuracy, 
compared to the model without SCC limits in train. 
This imbalance of sensitivity and specificity was 
also found in the study of Soyeurt et  al. (2012), 
where MIR predicted lactoferrin was used as an 
indicator for mastitis.

According to the results, the predictor model 
without applying SCC limits in calibration, is more 
adequate. Therefore, the discussion of further 
effects focusses on that model. Tab.  III clearly 
demonstrates that the prediction of mastitis cases 
works better with a shorter distance between 
diagnosis and test day in the validation dataset. The 
time window of -7 to +7 days in validation was also 
applied in the study of Soyeurt et al. (2012). When 

III: The effect of different predictor variables (MIR, SCS or MIR + SCS) and SCC limits in calibration (train), results in validation 
(test) extracted for different time windows

Predictor variables
no SCC limits in train SCC limits in train

windows test
sens. spec. bal.acc. sens. spec. bal.acc.

MIR 0.534 0.708 0.621 0.457 0.755 0.606

-21 to +21 (overall)SCS 0.501 0.849 0.675 0.490 0.862 0.676

MIR + SCS 0.574 0.791 0.682 0.473 0.878 0.675

MIR 0.458 0.708 0.583 0.368 0.755 0.561

-21 to -15SCS 0.401 0.849 0.625 0.394 0.862 0.628

MIR + SCS 0.474 0.791 0.633 0.373 0.878 0.626

MIR 0.484 0.708 0.596 0.412 0.755 0.584

-14 to -8SCS 0.513 0.849 0.681 0.499 0.862 0.681

MIR + SCS 0.555 0.791 0.673 0.477 0.878 0.678

MIR 0.605 0.708 0.657 0.540 0.755 0.647

-7 to +7SCS 0.615 0.849 0.732 0.604 0.862 0.733

MIR + SCS 0.678 0.791 0.735 0.586 0.878 0.732

MIR 0.560 0.708 0.634 0.478 0.755 0.617

+8 to +14SCS 0.466 0.849 0.658 0.447 0.862 0.655

MIR + SCS 0.558 0.791 0.675 0.441 0.878 0.659

MIR 0.479 0.708 0.594 0.394 0.755 0.574

+15 to +21SCS 0.374 0.849 0.612 0.361 0.862 0.612

MIR + SCS 0.475 0.791 0.633 0.347 0.878 0.612
sens. = sensitivity; spec. = specificity; bal.acc. = balanced accuracy
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comparing the time windows with larger distance 
between diagnosis and test day, predictions with 
MIR + SCS were very similar for test days before 
and after the occurrence of mastitis events. Yet, 
considering SCS and MIR as predictors separately, 
results seem to indicate that MIR predicted mastitis 
better, when test days were after mastitis diagnosis, 
while SCS predicted mastitis events better, when test 

days were before diagnosis. Prediction equations 
combining SCS and MIR were overall best. 

In general, the results presented here were 
hard to compare with a few other studies on MIR 
predicted mastitis, such as Soyeurt et al. (2012) and 
Dale and Werner (2017), because types of validation 
were very different.

CONCLUSION
This study explored the potential of milk MIR spectral data for prediction of mastitis cases. 
We investigated the utility of combining information of MIR and SCS, which were both available for 
every test day record. Results indicate that mastitis diagnoses may be predicted reasonably accurate, 
with balanced accuracies of 0.62 to 0.68 for time windows of +/-21 days between mastitis diagnosis 
and test day and up to 0.74 for shorter time windows. The information is potentially valuable for 
improved genetic evaluation of the trait ‘Udder health’, which is currently an index of SCS and 
clinical mastitis. Future studies on genetic correlations of clinical mastitis, SCS and MIR predicted 
mastitis will provide guidance in this direction.
Additional studies are planned to further improve the prediction model, by including the effects 
of milk yield, lactose, breed and parity.
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