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Abstract

FUSEK MICHAL, MICHÁLEK JAROSLAV. 2018. Left‑Censored Samples from Skewed 
Distributions:  Statistical Inference and Applications. �Acta Universitatis Agriculturae et  Silviculturae 
Mendelianae Brunensis, 66(1): 0245 – 0252.

Left‑censored data occur frequently in many areas. At present, researchers pay attention to skewed 
censored distributions more frequently. This paper deals with statistical inference of type I multiply 
left‑censored Weibull and exponential distributions. It suggests a  computational procedure for 
calculation of maximum likelihood estimates of the  parameters. The  expected Fisher information 
matrix for estimation of variances of estimated parameters is introduced. The estimates are then used 
for construction of confidence intervals for the expectation using the maximum likelihood method. 
Asymptotic tests for comparison of distributions (expectations respectively) of two independent 
left‑censored Weibull samples are proposed. Furthermore, asymptotic tests for assessing suitability 
of reduction of the  Weibull distribution to the  exponential distribution are introduced. Finally, 
the  left‑censored exponential distribution is briefly described. Methods derived in this paper are 
illustrated on elemental carbon measurements, and can be applied in analysis of real environmental 
and/or chemical data.

Keywords:  asymptotic tests, Fisher information matrix, left‑censored data, maximum likelihood, 
skewed distribution

INTRODUCTION
When analyzing real environmental data, 

it is often necessary to deal with a situation in 
which the  attribute being measured (for example 
the  concentration) falls below detection limit d of 
the measuring instrument. Such measurements are 
called left‑censored (El‑Shaarawi and Piegorsch, 
2012). In case the  detection limit is fixed, we 
talk about type I censoring, and the  number of 
censored experimental units is a random variable. 
In practice, more detection limits d1 < … < dk, k > 1, 
are often considered, and we talk about multiply 
left‑censored samples (Aboueissa, 2009; Aboueissa 
and Stoline, 2006; Cohen, 1991; El‑Shaarawi and 
Naderi, 1991; Fusek and Michálek, 2015b). In 
such a case, only observations above the  highest 
detection limit dk and the  number of observations 

under the  remaining detection limits are known. 
Often, k = 2; in such cases, we talk about doubly 
left‑censored data (Fusek and Michálek, 2012a, 
2012b). Standard statistical methods for analyzing 
left‑censored data are based on the assumption that 
the  measured attribute is a  normally distributed 
random variable. This approach is well described 
in El‑Shaarawi and Dolan (1989), and El‑Shaarawi 
and Naderi (1991). In practice, various ad hoc 
methods where the  censored observations are 
replaced by an appropriate constant lying between 
the  particular detection limits (Helsel, 2012) are 
very popular. This approach, which is frequent in 
many environmental studies, is critically reviewed 
in El‑Shaarawi and Esterby (1992), and Helsel (2006). 
When the  left‑censored samples are not normally 
distributed, various data normalization methods can 
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be used, for example, a  logarithmic transformation 
in case of log‑normal data, or the  Box‑Cox 
transformation. Nevertheless, in many cases it 
is impossible to find a  suitable transformation 
function. In some cases, it is also possible to convert 
left‑censored data to right‑censored data, and 
use nonparametric methods for right‑censored 
samples like the  Kaplan‑Meier estimator 
(Shumway  et  al., 2002). However, the  parametric 
approach to analysis of left‑censored data is 
currently preferred (Aboueissa and Stoline, 2006; 
Helsel, 2012). It is based on the  assumption that 
the  censored sample has a  known distribution. 
In order to estimate unknown parameters of 
the  distribution, the  maximum likelihood (ML) 
method (Barndorff‑Nielsen and Cox, 1994; 
Lehmann and Casella, 1998; Lehmann and Romano, 
2005), and the  approach based on the  regression 
on order statistics (Helsel, 2012; Shoari  et  al., 
2015) are often used. When analyzing skewed 
left‑censored samples, the log‑normal, the Weibull, 
the  exponential, the  generalized exponential, and 
the gamma distributions are usually used as model 
distributions (Fusek and Michálek, 2012b, 2015b; 
Gupta and Kundu, 1999; Helsel, 2012; Hogg  et  al., 
2005; Mitra and Kundu, 2008; Schmoyeri et al., 1996).

In this paper, attention will be paid to applying 
the  ML method to left‑censored samples with 
skewed distributions. This topic is only partially 
accounted for in literature (e.g., Mitra and Kundu, 
2008; Shoari  et  al., 2015). On one hand, the  ML 
approach can certainly be used when data are not 
normally distributed, and the  sample size is large 
enough. Then, under certain general regularity 
conditions, the  distribution of the  estimates can 
be approximated by the  normal distribution. 
On the  other hand, likelihood equations can be 
nonlinear, rather complicated, and their analytic 
solution is often impossible to find. In such 
a  case, numerical calculations are necessary, and 
researchers can use a  suitable software package. 
Well elaborated statistical methods for censored 
environmental data in Minitab and R can be found 
in Helsel (2012). Nevertheless, in many cases, it 
is necessary to assess properties of ML estimates 
for small sample sizes, to estimate variability of 
these estimates, to test hypotheses on parameters 
of particular distributions and/or to construct 
confidence intervals for various parameters. This 
requires determination of the  Fisher information 
matrix (FIM), which is necessary for description 
of asymptotic variability of obtained estimates. 
Asymptotic properties of these estimates and their 
variability for small sample sizes can be assessed 
using simulations.

This contribution focuses on reviewing 
available methods for type I left‑censored samples 
from skewed distributions, specifically from 
the  exponential and the  Weibull distributions. 
Authors prefer the  Weibull distribution because 
of its flexibility and ability to adapt to real data. 
In Shoari  et  al. (2015), there are critical comments 

about low robustness of the  Weibull distribution 
considering a misspecification of the  model 
distribution, especially for high values of skewness 
γ. However, simulation results showed that 
when the  sample size is small, and skewness of 
the distribution is high (γ > 2), there can be numerical 
difficulties with parameters estimates, which can 
give an impression of low robustness of the Weibull 
distribution to the  model misspecification. In 
the  next section, the  computational procedure 
for determination of ML estimates of parameters 
of the  Weibull distribution is presented, and 
the  analytical form of the  expected FIM is 
introduced. The  asymptotic confidence intervals 
for the  expectation of the  left‑censored Weibull 
distribution based on the  ML estimates will be 
derived. After that, a  two‑sample censored Weibull 
model will be introduced. Moreover, for comparison 
of two independent multiply left‑censored samples 
from the  Weibull distribution, three asymptotic 
tests with nuisance parameters (the Lagrange 
multiplier test, the  Wald’s test, the  likelihood ratio 
test) will be proposed. Furthermore, methods for 
comparison of expectations of two independent 
left‑censored samples from the Weibull distribution 
will be presented. Next, asymptotic tests for 
testing the  suitability of using the  exponential 
distribution instead of the  Weibull distribution 
will be introduced, and the  censored exponential 
distribution will be briefly described. The proposed 
methods are illustrated on a comparison of two data 
sets of elemental carbon measurements.

MATERIALS AND METHODS

One‑Sample Censored Weibull Model
Let X1,…, Xn be a random sample from 

the Weibull distribution with scale parameter λ > 0, 
shape parameter τ > 0, cumulative distribution 
function (CDF)
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Attention will be also paid to characteristics of 
the  Weibull distribution, specifically the  expected 
value
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and the skewness
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where Γ is the  gamma function. Furthermore, 
the  type I multiply left‑censored ordered sample 
of X1,…, Xn will be denoted by X(1),…, X(n). 
The  detection limits d1,…, dk will be considered 
and we put d0 = 0. Moreover, Ni is the  number 
of observations in the  interval (di−1, di〉, and N0 
is the  number of uncensored observations 
X(n− N0+1),…, X(n). The  log‑likelihood function of 
the censored sample is given by (Cohen, 1991)
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and for N0 = 0 we put ( )( )0 1log 0n
i n N if X= − +

  =  ∑ .

The  standard approach to estimation of 
parameters λ, τ is to derive likelihood equations, and 
solve them using the  Newton‑Raphson method. 
However, there are numerical difficulties with 
obtaining the  solution for low values of the  shape 
parameter τ, i.e. for high values of skewness (4). 
Therefore, ML estimates λ̂, τ̂ of parameters λ, τ were 
obtained by maximizing the log‑likelihood function 
(5). This is a complex optimization problem 
which has to be solved numerically. In our case, 
the  Nelder‑Mead simplex algorithm (Lagarias  et  al., 
1998) in Matlab (version R2015a) was applied. 
When using this type of algorithms, it is necessary 
to select initial values of parameters that need to 
be estimated. Starting values were selected using 
the  moment estimator (Anděl, 2005) of parameters 
of the  Weibull distribution based on samples in 
which the censored observations were replaced by a 
constant lying between the detection limits.

According to Barndorff‑Nielsen and Cox (1994), 
the sample FIM J̃n, which is an unbiased estimator of 
the expected FIM
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can be calculated using formula
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Since J̃n(λ,τ) → Jn(λ,τ) in probability for n → ∞, 
and the  determination of the  expected FIM can be 
unnecessarily complicated, the sample FIM is often 

used (Aboueissa, 2009) instead of the  expected 
FIM. One major disadvantage of this approach is 
the  rather extensive variability of the  sample FIM. 
Therefore, the  expected FIM Jn will be preferred. 
Derivation of the  exact form of the  expected 
FIM can be found in Fusek (2013). Considering 
(under mild regularity conditions) the  asymptotic 
properties of the ML estimator (̂λ, τ̂) of the parameter 
vector (λ,τ), it has, according to Lehmann and Casella 
(1998), asymptotically normal distribution with 
the  expectation (λ,τ), and the  asymptotic variance 
matrix
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The  bias of various estimators of variance of 
the  shape parameter τ is analyzed in Fusek and 
Michálek (2012b) for doubly left‑censored samples. 
It was shown on simulated data that bias of 
the  asymptotic variance estimator obtained using 
the  expected FIM Jn is lower than that obtained 
using the sample FIM J ̃n even for small sample sizes. 
Therefore, the expected FIM is preferable.

Confidence Intervals for Expectation of 
the Left‑Censored Weibull Distribution

When analyzing environmental data, researchers 
are often interested in estimation of the  expected 
value of an observed variable. Therefore, the  point 
estimate and the  asymptotic confidence interval 
for the expectation (3) of the  left‑censored Weibull 
distribution will be introduced. Moreover, it can be 
used for testing a hypothesis on the expected value 
of the measured variable.

Using asymptotic properties of the ML estimates, 
it can be shown that the distribution of the estimate 
μ( λ̂,̂τ) of the  expected value μ(λ,τ) is under 
regularity conditions asymptotically normal with 
the  expectation μ(λ,τ). The  asymptotic variance can 
be obtained by the delta method (Casella and Berger, 
2002) using derivatives of the  parametric function 
μ(λ,τ), and is of the form
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where Ψ is the digamma function, and aT denotes 
the  transpose of vector a. Since the  distribution 
of the  estimate μ( λ̂,̂τ) is asymptotically normal, 
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the  asymptotic 100(1−α) % confidence interval 
for μ(λ,τ) can be easily obtained from (3) and (7), 
and the  lower (LCL) and upper (UCL) (1 − α) % 
confidence limits for estimate  μ̂ can be calculated as

( ) ( ) ( )( )
1

2

UC ˆ ˆˆ ˆ ˆL , Var , ,z αµ µ λ τ µ λ τ
−

= +

( ) ( ) ( )( )
1

2

LC ˆ ˆˆ ˆ ˆL , Var , ,z αµ µ λ τ µ λ τ
−

= −

where z1−α/2 is the  1−α/2 quantile of the  standard 
normal distribution. It is always difficult to 
assess how well the  sample statistic estimates 
the  underlying population value, what its bias is, 
and what the  coverage probabilities of confidence 
intervals are. For this purpose, a  simulation study 
comparing a) estimates of the  expected value, 
b) the  ML‑based and bootstrap‑based (Efron, 
1979) confidence intervals, was carried out in 
Fusek and Michálek (2016). It was found out that 
the  expected values estimated using the  ML and 
the  bootstrap methods are very similar in almost 
all cases. However, in case of a  small sample size, 
a  high censoring level and γ > 0, ML estimates of 
the  expectation were the  best. Despite the  fact that 
in case of a small sample size and a high censoring 
level, the  bootstrap‑based confidence intervals 
were much narrower that the  ML‑based ones, it 
was found out that ML‑based confidence intervals 
have better coverage probabilities in case of high 
censoring. More details on this topic can be found in 
Fusek and Michálek (2016).

Two‑Sample Censored Weibull Model
Let Xj,1,…, Xj,n, j = 1,2, be two independent 

censored samples from the  Weibull distribution 
with CDF (1), PDF (2), and parameters λ1 = λ, τ1 = τ in 
case of the first sample (j = 1), and λ2 = λ + α, τ2 = τ + β 
in case of the  second sample (j = 2). Furthermore, 
the  ordered sample of Xj,1,…, Xj,n is denoted by 
Xj,(1),…, Xj,(n), and frequencies Nj,i correspond to 
frequencies Ni, i = 0,1,…, k, from previous sections. 
The  log‑likelihood function of the  two joint 
censored samples can be formulated using (5), and 
is of the form

lR(α,β,λ,τ)	 = l(λ,τ,N1,0,…, N1,k, X1,(n−N
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The  maximum likelihood estimates α̂, β̂, λ̂, τ̂ of 
parameters α, β, λ, τ can be obtained by maximization 
of the log‑likelihood function (8). The Nelder‑Mead 
simplex algorithm can be applied again.

Using the FIM for the one‑sample Weibull model, 
we get the expected FIM for the two‑sample Weibull 
model in the form
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and the analytical form of elements of the expected 
FIM JR

n (α,β,λ,τ) can be found in Fusek (2013).

Comparison of Two Left‑Censored Weibull 
Samples

In order to compare two independent 
multiply left‑censored samples from the  Weibull 
distribution, asymptotic tests with nuisance 
parameters can be used (Lehmann and Romano, 
2005), specifically the Lagrange multiplier test (LM), 
the  Wald’s test (W) and the  likelihood ratio test 
(LR). The  null hypothesis H0 is that distributions 
of both samples are equal. Thus H0:(α,β)T = (0,0)T is 
set against the  alternative H1:(α,β)T ≠ (0,0)T and λ, τ 
are nuisance parameters. The  test statistics are of 
the form (Anděl, 2005)

( ) ( ) ( )1
1 ,11.2 10,0, , 0,0, , 0,0, , ,R T

nLM λ τ λ τ λ τ
−

 =  
  

  U J U

( ) ( ) ( ),11.2
ˆ ˆ ˆ ˆˆ ˆ, , , , ,ˆ ,ˆ

TR
nW α β α β λ τ α β =   

J

( ) ( )ˆ2 , , , 0,0,ˆ , ,ˆˆR RLR l lα β λ τ λ τ = −  


 	 (10)

where U1(α,β,λ,τ) = (∂lR/∂α,∂lR/∂β) is the  score 
function, and

( ) 11 12
,11.2

21 22

1
13 14 33 34 31 32

23 24 43 44 41 42

, , ,
R R

R
n R R

R R R R R R

R R R R R R

J J

J J

J J J J J J

J J J J J J

α β λ τ

−

 
 = −
 
 

    
    −
    
    

J

is the  element of the  blockwise inversion of 
the  expected FIM (9). The  parameters estimated 
under the  null hypothesis are denoted by a  tilde, 
and those estimated under the  alternative are 
denoted by a hat. The test statistics LM, W, LR have 
asymptotically χ2 distribution with two degrees 
of freedom (Lehmann and Romano, 2005). More 
information about the performance of test statistics 
(10) together with their simulated power functions 
can be found in Fusek and Michálek (2014).
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Comparison of Expectations of Two 
Left‑Censored Weibull Samples

For comparison of expectations μ1(λ1,τ1) and μ2(λ2,τ2) 
of two independent multiply left‑censored samples 
from the  Weibull distribution, the  asymptotic test 
statistic
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can be used. The expectation μ( λ̂, τ̂) is given by (3),
 

and the variance  ( )( )ˆV ˆ,ar µ λ τ  is given by (7) where 
all the  unknown parameters have to be replaced 
by their ML estimates. Under the  null hypothesis 
H0:μ1 = μ2, the  statistic WE has asymptotically 
normal distribution N(0,1). Power of the  test based 
on the  test statistic WE can be found in Fusek and 
Michálek (2015a).

Reduction of the Weibull Model to 
the Exponential Submodel

There are situations when the  censored Weibull 
distribution is too complicated for description 
of the  measured variable, and the  exponential 
distribution would be sufficient. In such a situation, 
asymptotic tests with nuisance parameters can 
be used. The  null hypothesis is that the  Weibull 
distribution can be simplified to the  exponential 
distribution, specifically H0:τ = 1 against 
the alternative H1:τ ≠ 1. The test statistics have under 
the  null hypothesis asymptotically χ2 distribution 
with one degree of freedom (Lehmann and Romano, 
2005), and are of the form
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where l(λ,τ) is the  log‑likelihood function 
(5). Moreover, Jn,22.1(λ,τ) = n(J22 − J21J11 

−1J12) is a 
transformation of the FIM (6) and U1(λ,τ) = ∂l(λ,τ)/∂τ is 
the score function. The parameters estimated under 
the null hypothesis are again denoted by a tilde, and 
those estimated under the alternative are denoted by 
a hat. More details on this topic including powers of 
particular tests can be found in Fusek and Michálek 
(2017). An application of this method on real data 
can be found in Fusek and Michálek (2013).

One‑Sample Censored Exponential Model
In this section, attention will be paid to 

a  description of the  left‑censored exponential 
distribution, which is a  special case of the  Weibull 
distribution for τ = 1. The  exponential distribution 
has skewness γ = 2, and can play an important role 
when dealing with skewed distributions because 
of its simple analytical form. Let us have a  type I 
multiply left‑censored random sample X1,…, Xn 

from the  exponential distribution with scale 
parameter λ and CDF

( )
1 exp for  0,

,

0 for  0.

x
x

F x
x

λ λ
  − − ≥  =  
 <

The ML estimate of parameter λ can be calculated 
by maximizing the  log‑likelihood function (5) 
considering τ = 1. The sample FIM is given by

( )
2

2
l

J λ
λ
∂

= −
∂



	 (11)

and the expected FIM is given by

J(λ) = EJ ̃(λ).	 (12)

The derivation of (11) and (12) together with their 
exact analytical forms can be found in Fusek and 
Michálek (2015b). In order to study properties of 
the  ML estimate of λ and its variance, simulation 
study was carried out. The  asymptotic variance 
was compared with its estimates σ2 ( λ̂) = J−1( λ̂) and 
σ̃2( λ̂) = J̃−1( λ̂). Considering the  estimates σ2( λ̂) and 
σ̃2( λ̂), 95 % confidence intervals for parameter λ 
were calculated, and their coverage probabilities 
were determined. It was found out that for sample 
sizes n ≥ 30 and less than 50 % of censored values, a 
satisfactory statistical inference about parameter λ is 
possible. In case the  number of censored values is 
high (≥50 %), the  coverage probabilities for sample 
sizes n ≤ 30 based on σ2 ( λ̂) are about 1 % lower than 
the specified 95 % confidence limit, and those based 
on σ̃2( λ̂) are about 2 % lower than the  specified 
95 % confidence limit. More results and details of 
the simulations can be found in Fusek and Michálek 
(2015b).

Similar methods for comparison of distributions 
(expectations respectively) of two independent 
left‑censored samples from the  exponential 
distribution were derived, and can be found in 
Fusek (2013) and Fusek and Michálek (2013).

RESULTS
The  proposed methods will now be illustrated 

on real data. Let us have two data samples of 
elemental carbon concentration measurements 
from the  atmospheric station Křešín u Pacova, 
Czech Republic (Dvorská  et  al., 2015). Each of 
the  samples contains 41 measurements from one 
week in September (first sample) and October 
2013 (second sample). The  measurements are 
doubly left‑censored with detection limits d1 = 0.2 
and d2 = 0.5. There are N1,0 = 25 uncensored 
measurements, and N1,1 = 1, N1,2 = 15 in case of 
the first sample, and there are N2,0 = 30 uncensored 
measurements, and N2,1 = 0, N2,2 = 11 in case of 
the second sample.

Considering that both samples are independent 
and have the  Weibull distribution with parameters 
λj, τj, j = 1,2, the  goal is to test the  hypothesis that 
both samples have the  same distribution, and 
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subsequently test the hypothesis that both samples 
have the  same expected value. The  assumption 
of the  Weibull distribution was confirmed 
using Q‑Q plots and the  χ2 goodness‑of‑fit test. 
Using the  ML method, estimates of parameters 
λj, τj, expected values μ(λj,τj) and their variances 

 ( )( )2 Va ˆ ˆr ,j j jσ µ λ τ= , j = 1,2, can be calculated. 
The  obtained estimates are λ1 = 0.691, τ1 = 2.131, 
μ1 = 0.611, σ1

2 = 0.302 in case of the first sample, and 
λ2 = 0.720, τ2 = 3.695, μ2 = 0.650, σ2

2 = 0.196 in case of 
the  second sample. The  95 % confidence intervals 
for expectations are (0.019, 1.203) in case of the first 
sample, and (0.266, 1.035) in case of the  second 
sample.

In order to test the hypothesis H0:λ1 = λ2 and τ1 = τ2, 
test statistic (10) can be used. The obtained p‑values 
are p = 0.015 for the  Lagrange multiplier test, 
p = 0.001 for the  likelihood ratio test, and p = 0.016 
for the  Wald’s test. Since the  null hypothesis is 
rejected at the significance level of 0.05 in all cases, 
the  distributions of both samples are not identical. 
Moreover, the  hypothesis of equality of expected 
values of both samples was tested, and WE = −0.704 
with p‑value p = 0.481 were calculated. Therefore, 
the  difference in expectation of both samples has 
not been proven. Histograms of both samples 
together with the  estimated PDF of the  Weibull 
distribution are in Fig. 1.
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a) September 2013	 b) October 2013

1:  Histograms of elemental carbon measurements with the Weibull density. Measured values are displayed on the x‑axis.

CONCLUSION
This paper focused on the statistical inference of skewed type I left‑censored distributions, specifically 
the  exponential and the  Weibull distributions. The  computational procedure for calculation of 
ML estimates of parameters of the  Weibull distribution was proposed, and the  analytical form 
of the  expected FIM was introduced. The  asymptotic confidence intervals for the  expectation of 
the  left‑censored Weibull distribution based on ML estimates were introduced and compared 
with those obtained by the bootstrap methodology. It was found out that ML method outperforms 
the bootstrap method in terms of bias of expectations and also in terms of coverage probabilities of 
the particular confidence intervals in case of the high censoring and skewness. In order to compare 
two independent left‑censored samples from the Weibull distribution, asymptotic tests with nuisance 
parameters were suggested. For a comparison of expectations, an asymptotic test based on the Wald’s 
test statistic was introduced. The proposed methods were illustrated on comparison of two data sets 
of elemental carbon concentration measurements. Furthermore, methods for testing the suitability 
of replacement of the Weibull distribution with the exponential distribution were described. Finally, 
a model of the left‑censored exponential distribution was briefly described. It was shown that using 
the expected FIM instead of the sample FIM can be beneficial despite the more difficult calculations.
More applications of the  presented methods can be found in Fusek and Michálek (2013), and 
Fusek et al. (2015), where they were used for assessing the effectiveness of the wastewater treatment 
plant with respect to the  presence of musk compounds in fish tissue samples. All the  procedures 
used were implemented in Matlab environment (R2015a), and are available upon request. Methods 
described in this paper can be used in the analysis of real environmental and/or chemical data.
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