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Abstract
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The literature suggests that, in short‑term electricity‑price forecasting, a  combination of ARIMA 
and support vector regression (SVR) yields performance improvement over separate use of each 
method. The objective of the research is to investigate the circumstances under which these hybrid 
models are superior for day‑ahead hourly price forecasting. Analysis of the Nord Pool market with 
16 interconnected areas and 6 investigated monthly periods allows not only for a  considerable 
level of generalizability but also for assessment of the  effect of transmission congestion since this 
causes differences in prices between the  Nord Pool areas. The  paper finds that SVR, SVRARIMA 
and ARIMASVR provide similar performance, at the same time, hybrid methods outperform single 
models in terms of RMSE in 98 % of investigated time series. Furthermore, it seems that higher 
flexibility of hybrid models improves modeling of price spikes at a slight cost of imprecision during 
steady periods. Lastly, superiority of hybrid models is pronounced under transmission congestions, 
measured as first and second moments of the electricity price.

Keywords:  short‑term electricity price forecasting, hybrid models, time series, ARIMA models, 
support vector regression, transmission congestion, Nord Pool electricity market

INTRODUCTION
Electricity market deregulations in 1990s caused 

a  need for electricity price forecasting (EPF) due to 
leaving electricity price determined by supply and 
demand, which resulted in substantial volatility 
of electricity price and thus elaborate predictions 
of future price became necessary for agents on 
the  market. Next‑day prices are important to 
forecast for mainly three groups of agents: electricity 
producers, retailers and large industrial firms. For 
example, if a  firm contracts a  surplus of electricity, 
it is obliged to pay not only for the ordered amount 
but also for the  surplus, hence paying for unused 
energy twice. On the  other hand, shortage of 
electricity causes underproduction and loss of 
profit. Therefore, the  costs of imprecise amount of 
contracted electricity cause significant losses and 
can lead to bankruptcy (Weron, 2014).

Non‑storability of electricity causes failure of 
the  no‑arbitrage condition known from most 
markets. Even if the  agents know that future price 
will increase, the  electricity cannot be bought, 
stored and resold in the  future for a  higher price. 
Thus, the electricity price can be relatively precisely 
forecasted since its changes correspond mainly 
with changes in demand which are to some extent 
predictable. For instance, electricity demand 
usually peaks around noon and is lowest during 
early morning hours, or is generally lower during 
weekends. The  seasonal behavior of demand 
determines electricity price seasonality. Considering 
the time dimension, differences in price are based on 
the daily hour, the weekday, the month and the year. 
Specificity of electricity price behavior affects 
the  choice of suitable forecasting techniques since 
the  electricity price series is subject to seasonality, 
pronounced volatility, positive skewness, excess 
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kurtosis, and conditional heteroscedasticity 
(Karakatsani and Bunn, 2008).

Forecasting techniques can be perceived 
according to their flexibility, i.e., capability to 
capture irregular and volatile behavior. Flexible 
techniques are usually more complex hence 
require more observations, at the same time, decent 
performance is often achieved in modeling volatile 
time series. Rather nonflexible approaches are 
time series methods, which are usually parametric. 
Parametric models assume some distribution of 
price shocks, whereas, nonparametric models 
leave the  price series unrestricted. The  most‑used 
and oldest models in EPF are autoregressive (AR) 
processes, which are parametric. AR models often 
incorporate a moving‑average (MA) part, sometimes 
consider additional variables (Weron and Misiorek, 
2005), and usually perform sufficiently during 
steady periods, whereas, price spikes and periods 
of substantial volatility are beyond their capabilities 
(Weron, 2014). More flexible methods are usually 
nonparametric, with machine learning (computer 
intelligence) approaches being the  most successful 
(Weron, 2014). Machine learning approaches are 
often capable of capturing substantial non‑linearity, 
thus, can be seen complementary to ARMA‑type 
models, which is the  perspective adopted in this 
paper. Disadvantage of machine learning techniques 
is their inability to interpret the model since the only 
output is usually the prediction.

By combining an ARMA‑type model with 
a  machine learning technique, namely support 
vector regression (SVR), flexibility of this hybrid 
model should increase compared a  single‑method 
model. In addition, one can utilize advantages from 
each of the  two worlds:  attaining precise forecasts 
by capturing nonlinear behavior while maintaining 
some interpretability. This research aims to 
compare two specifications of hybrid models based 
on ARIMA combined with SVR since the  SVR 
models have shown to yield high performance 
in this combination (Weron, 2014). Furthermore, 
by comparing multiple areas of the  Nord Pool 
market, the  effect of transmission congestion is 
assessed since insufficient network capacity induces 
differences in prices between areas (Kristiansen, 
2014; Loland et al., 2012). The effect of transmission 
congestion on forecasting precision is a  part of 
balancing costs, i.e., enters the final electricity price.

The paper shows very similar performance 
of the  two most‑used sequential approaches to 
the  ARIMA‑SVR combination. The  first approach 
estimates ARIMA and then predicts residuals by 
SVR, the  second approach is vice versa, i.e., SVR 
predicting the  price and ARIMA the  residuals. 
The  paper finds that, in terms of RMSE, 
performance of both hybrid methods is close to 
a  single SVR method, nevertheless, the  single SVR 
method is superior in only 2 % of the  investigated 
times series. Furthermore, it seems that the  value 
added of the  hybrid methods lies in improved 
capturing of price spikes at a slight cost of increased 

imprecision during steady periods. Lastly, volatility 
and transmission constraints seem to negatively 
affect predictability of day‑ahead prices, which can 
be perceived as a  cost for agents operating at an 
electricity market.

Literature Review
Agents in the market have different information on 

which they can base their estimates of future prices. 
For example, dominant producers or integrated 
companies possess critical information on market 
fundamentals hence create asymmetries across 
agents (Karakatsani and Bunn, 2008). According to 
the dominance of agents, two streams of research are 
apparent in the  literature. The  prevalent approach 
for dominant agents is based on multi‑agent models 
(Ventosa et  al. 2005), which allow for incorporating 
private information in order to forecast price 
changes caused by shifts in supply or demand; thus, 
yielding rather qualitative than quantitative results 
(Weron, 2014). The  approach for less‑influential 
agents uses fundamental, reduced‑form, statistical 
or machine learning methods (Weron, 2014) with 
usually publicly available information and produces 
estimation methods for agents, for which extra 
private information is not available. The  latter is 
the subject of interest in this research.

For about last five years the  EPF literature 
has been investigating hybrid methods based 
on support vector regression (SVR) algorithms 
(Chaabane, 2014; Che and Wang, 2010; Kavousi‑Fard 
and Kavousi‑Fard, 2013; Saleh et  al., 2014). These 
studies report substantial success of these hybrid 
approaches compared to using a single method. Of 
all flexible methods, SVR are preferred due to their 
out‑of‑sample performance, avoidance of local 
optima problems (Basak et  al., 2007) and the  ability 
to visit infinite‑dimensional space due to kernels 
(Christmann and Steinwart, 2007). Saleh et al. (2014) 
suggest that SVR offers more precise electricity price 
predictions than artificial neural networks, which 
have been popular in EPF (Weron, 2014).

Khashei and Bijari (2010) provide the  motivation 
for using a  combination of methods:  one either 
cannot identify the  data‑generating process, 
or one is unable to capture all characteristics 
of the  time series using a  single method. Thus, 
the combination provides more scope for capturing 
the  characteristics of the  process. In the  case of 
SVR hybrid methods, the electricity price is usually 
considered to be composed of two parts:  linear 
and non‑linear. The  non‑linear part is explained 
by SVR, while the  linear part is described by some 
ARMA‑type process. ARMA‑type models have been 
the workhorse of EPF since its beginning, and even 
currently their performance is reasonably useful 
(Weron, 2014). Cuaresma et  al. (2004) have shown 
that various extensions of ARMA models bring 
substantial improvements in terms of forecasting 
precision.

The current EPF literature on ARMA‑SVR hybrid 
methods seems not to investigate generalizability 
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since usually a few models are estimated for one 
or two periods. The need for many periods should 
increase with the variety of patterns and their 
length, both of which seem to be high in European 
electricity markets that are usually under study 
(Bosco et al., 2010). Considering the ARMA‑SVR 
studies available, Che and Wang (2010) have 
somewhat arbitrarily selected two weeks of 
the Californian electricity prices. In addition, both 
Chaabane (2014) and Che and Wang (2010) have 
used only 100 data points of the Nord Pool prices 
to evaluate the forecasting error. Both Saleh et al. 
(2014) and Kavousi‑Fard and Kavousi‑Fard (2013) 
have employed the hybrid approach to forecast 30 
days of electricity load in Iran. Thus, generalization 
of the fi ndings in the current literature appears 
troublesome. Furthermore, investigation of 
the eff ect of transmission congestion on day‑ahead 
forecasting precision was not found in the literature.

The Nordic Electricity Market
The Nordic Power Market (Nord Pool) was 

established as a consequence of power market 
deregulations of Nordic countries in the early 
1990s. By the end of 2000, the market was operating 
for Norway, Sweden, Finland, and Denmark. In 
2010‑2013, Estonia, Latvia, and Lithuania joined. 
A substantial feature of the market is that about 50 % 
of electricity is generated by hydropower plants, 
which allows for some level of storage, thus giving 
a possibility to slightly smooth the prices. The eff ect 
is most pronounced in Norway where about 95 % 
of power is generated by hydro. Nevertheless, 
as depicted on Fig. 1, March 2013 – March 2016, 
the hourly electricity price was subject to noticeable 
volatility. The system price is the price disregarding 
transmission constraints. Furthermore, Fig. 1 
shows forecasted periods: August 2013, January 

2014, August 2014, January 2015, August 2015, and 
January 2016. August prices do not have many large 
price spikes, whereas, January prices exhibit more 
volatile behavior, which is challenging to capture for 
any forecasting method. Therefore, variety of time 
series allowing some generalizability is captured.

For each of the 6 periods, hourly day‑ahead prices 
are forecasted for each of the following 16 price 
areas: System (baseline price), Norway (6 areas), 
Sweden (4), Finland (1), Denmark (2), Estonia (1), 
Latvia (1). The areas serve for diff erentiation between 
prices due to transmission congestions. The level 
of congestion can be viewed in two ways: intensive 
and extensive. Both dimensions are captured by 
the mean of prices, whereas, extensiveness only can 
be computed as a percentage of time when the area 
price is higher than the system price. Furthermore, 
congestion not only causes the price of the area with 
high demand to increase but also causes the price of 
the area which would deliver some power under no 
limitation to decrease.

Tab. I captures descriptive statistics of price 
areas for Mar 2013 – Mar 2016. Strong positive 
correlations are found between mean price and 
standard deviation (0.75), mean price and extensive 
congestion (0.84), standard deviation and extensive 
congestion (0.67), which suggests that transmission 
constraints not only increase average price but also 
volatility of prices. The causal channel hypothesized 
is based on the general ability of large grids to 
smooth demand and supply spikes in diff erent parts 
of the grid. Thus, areas with insuffi  cient connection 
should be more prone to variation due to local 
demand and supply shocks.

The main institution for trading electricity is 
the day‑ahead market, therefore, forecasting in this 
paper obeys its information fl ows. Buyers and sellers 
submit bids consisting of price and quantity for each 

1: Nord Pool System Electricity Prices and Forecasted Periods.
Source: the author
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hour of the next day. The market closes at 12:00 CET 
and according to the  bids, equilibrium price and 
quantity are calculated. The  next day, on hourly 
basis, contracts are physically delivered. Price areas 
serve for addressing bottlenecks in the  system by 
increasing the  price for area with relatively high 
demand and low supply and vice versa.

Forecasting methods
Five forecasting methods are implemented: naïve, 

ARIMA, SVR, ARIMASVR, SVRARIMA. In 
the literature of the hybrid setup with SVR, various 
time series specifications were identified:  Che 
and Wang (2010), Karakatsani and Bunn (2008), 
Kavousi‑Fard and Kavousi‑Fard (2013), Pai and 
Lin (2005), and Saleh et  al. (2014) use ARIMA, Yan 
and Chowdhury (2013) use ARMAX, Chaabane 
(2014) uses ARFIMA. This paper employs 
the  most‑common ARIMA approach. Hourly price 
data serve directly as an input for these methods 
and each method has been estimated for each of 
the  6 periods and for each of the  16 price areas, 
thus yielding 480 time series forecasts in total. 
Description of the implemented methods including 
their application in this paper is provided in 
the following sections: Naïve method; ARIMA; SVR; 
Hybridization: ARIMASVR, SVRARIMA.

Naïve method
The naïve method is often used as a  benchmark 

method for calculation of error measures (e.g., 
Hyndman and Koehler, 2006) and in this paper 
serves the  same purpose. The  naïve approach 
forecasts hourly prices for the next day as prices of 
the current day. Any more sophisticated forecasting 
method should outperform this strategy. One 
can perceive the  naïve method as a  measure of 
forecasting difficulty between series since, e.g., more 
volatile and spiky series, which are generally more 
difficult to forecast, achieve worse score using this 
method.

ARIMA
In this paper, forecasting with ARIMA is 

based on the  STL decomposition introduced by 
Cleveland et  al. (1990), which divides the  time 
series into a  trend, a  seasonal, and a  remainder 
component using LOESS1 smoothing. The  trend 
and the  seasonal component are subtracted from 
hourly prices, the  remainder is forecasted by 
a  non‑seasonal ARIMA model. Then, forecasts are 
reseasonalized by adding the most recent forecast of 
the  seasonal part, i.e., forecasting the  seasonal part 
by the naïve approach. It is allowed for non‑additive 
decompositions by using a Box‑Cox transformation 
on the data before and after forecasts are computed. 
A non‑seasonal ARIMA model can be written as:

1 1

 α θ ε ε− −
= =

= + ∅ + +∑ ∑
p q

t j t j k t k t
j k

x x

where x is a differenced time series and ε are errors. 
A triplet (p, d, q) denotes the order of AR(p) and MA(q) 
polynomial with the order of first differencing d. For 
determining the  optimal value of (p, d, q), a  routine 
by Hyndman and Khandakar (2007) using unit‑root 
tests, MLE and minimization of the AIC criterion is 
implemented.

The STL decomposition and ARIMA(p, d, q) are 
estimated on two months of hourly prices and 
24  hourly prices for the  next day are computed. 
Then, the  period of two months shifts by one day 
and the  whole forecasting procedure is repeated. 
This relatively long period was chosen in order to 
allow for convergence of the algorithm.

SVR
A version of support vector machine for 

regression estimation (SVR) was developed by 
Vapnik, Golowich and Smola (1997). The underlying 
idea of SVR is to fit a linear regression function using 
a  nonlinear mapping from a  high‑dimensional 
input space (Basak et  al., 2007), thus to overcome 
the  problem of multidimensional function 

I:  Descriptive statistics of Nord Pool areas (Mar 2013–Mar 2016), price in EUR/MWh.

Area Bergen Kr.sand Oslo SYS Troms. Molde Tr.heim SE1

Mean Price 25.6 25.6 25.8 27.2 27.5 28.0 28.0 28.0

St. Dev. 4.6 4.7 5.2 5.6 5.0 5.5 5.5 6.3

Time > SYS1 0.19 0.19 0.20 0.00 0.39 0.49 0.49 0.42

Area SE2 SE3 DK1 SE4 DK2 FI EE LT

Mean Price 28.0 28.6 29.1 29.5 30.2 34.2 37.0 48.1

St. Dev. 6.3 7.9 21.3 9.3 11.3 13.6 16.1 19.9

Time>SYS 0.42 0.46 0.39 0.49 0.52 0.75 0.80 0.94
1Extensive congestion:  Fraction of time the  area price is higher than the  system price, i.e., an extensive measure of 
congestion.
Source: the author.

1	 LOESS refers to a nonparametric locally‑weighted polynomial regression developed by Cleveland (1979).
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estimation by reducing the  number of estimated 
parameters (Vapnik et  al., 1997). The  input space 
is transformed via kernels into a  low‑dimensional 
feature space and its parameters are estimated and 
used for forecasting, which provides also higher 
generalizability than forecasting using many 
parameters.

In this paper, estimation of SVR employs 
lagged values up to the  24th order, which are 
daily‑hour‑specific, followed by lags of order 48 
and 72. Each daily hour uses specific orders of lags 
according to the  availability of information. For 
example, the hour after midnight uses all lags from 
the  1st up to the  24th order, whereas, 20:00 – 21:00 
price exploits only lags of the  21st up to the  24th 
order. A  month of hourly prices is used to train 
the model. The setup of the minimization problem 
is described in (Basak et  al., 2007), equation 15 – 18. 
A  four‑fold cross‑validation is conducted in 
order to choose the  best values for the  following 
parameters:  a  cost parameter for misclassification 
C, a  measure of precision ε, and a  parameter γ of 
the  radial‑basis‑function kernel, which allows 
mapping into higher‑dimensional space. Similarly 
to ARIMA forecasting, the model is reestimated for 
each day with the  exception that cross‑validation 
search for hyperparameters is conducted only once 
for the time series.

Hybridization: ARIMASVR, SVRARIMA
Electricity price y can be generally viewed as 

a function of its linear component L and non‑linear 
component N (Chaabane, 2014): y = f (L,N). Usually, 
the  relationship between L and N is considered 
additive (Kavousi‑Fard and Kavousi‑Fard, 2013; 
Pai and Lin, 2005). Two sequential approaches 
are investigated. A  more common approach is to 
forecast price using ARIMA and then employ SVR 
to characterize non‑linear behavior of ARIMA 
residuals (e.g., Chaabane, 2014; Kavousi‑Fard and 
Kavousi‑Fard, 2013; Pai and Lin, 2005; Saleh et  al., 
2014), thus building the overall prediction as a sum 
of the  predicted y by ARIMA and the  predicted 
residual by SVR, i.e., ARIMASVR. A  less‑common 
approach is vice versa: using SVR first with ARIMA 
predicting residuals (Yan and Chowdhury, 2013), 
i.e., SVRARIMA. Che and Wang (2010) implement 
both approaches and report a  slightly better 
performance of the latter.

Three months of data are used to obtain 
prediction errors of hybrid models. The first month 
serves for estimating the  model forecasting price, 
subsequently, the price is forecasted for the second 
and third month. Then, residuals for these two 
months are computed, the  other type of model is 
estimated on the  second month, and residuals are 
forecasted for the third month. Forecasting follows 
the  same procedure as with individual methods, 
which are described in section ARIMA and SVR. 
Predicted price is the  sum of predicted price and 
predicted residuals for the third month, i.e., August 
or January.

Hypotheses
As the  literature suggests, hybrid models should 

perform better than approaches based on a  single 
method.

Hypothesis 1: Adding SVR to forecast ARIMA residuals 
does not provide a  significant forecasting performance 
improvement.

Hypothesis 2: Adding ARIMA to forecast SVR residuals 
does not provide a  significant forecasting performance 
improvement.

According to the  outlined theory, transmission 
congestion increases both mean price and volatility. 
Enhancing ARIMA by SVR should provide more 
precise forecasts especially under high volatility 
and price spikes since ARIMA is not suitable 
for capturing irregular behavior. Employing 
the  same logic, ARIMA modeling SVR residuals 
could contribute to forecasting precision due to 
its ability to capture linear behavior of time series. 
The argument for ARIMA benefitting to SVR model 
seems somewhat weaker since SVR is more flexible.

Hypothesis 3:  ARIMA performance improvement by 
SVR predicting residuals does not increase with mean price.

Hypothesis 4:  SVR performance improvement by 
ARIMA predicting residuals does not increase with mean 
price.

Hypothesis 5:  ARIMA performance improvement by 
SVR predicting residuals does not increase with volatility of 
price.

Hypothesis 6:  SVR performance improvement by 
ARIMA predicting residuals does not increase with 
volatility of price.

In order to test hypotheses 3 – 6, the  relationship 
between performance improvement and measures 
of congestion is investigated. The  following 
flexible specification provides a  straightforward 
approach to investigate both linear and nonlinear 
relationships:

( ) 

2 3
1 2 3

2 3
1 2 3

α β β β

γ γ γ δ ε

= + + + +

+ + + + × +

improvement sd sd sd

mean mean mean sd mean
	

(1)

where improvement  refers to the  difference 
between a  hybrid and a  non‑hybrid model in 
terms of forecasting error, sd denotes standard 
deviation of price and mean is the  average price 
over the  forecasted period. Standard deviation 
is a  measure of volatility, whereas, both standard 
deviation and mean are measures of congestion. 
β‑coefficients are of interest when investigating 
hypotheses about volatility; γ‑coefficients report 
the  effect of mean price; β, γ, δ‑coefficients serve 
for studying the  effect of congestion including 
nonlinear relationships between the  variables 
of interest. Inclusion of higher powers and 
interactions of explanatory variables covers 
possible interesting relationships between 
the  performance improvement and congestion. 
The  parameters are estimated by Ordinary Least 
Squares since this approach provides unbiased 
estimates of parameters under the  assumption 
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of exogeneity, which seems plausible in this 
scenario2. Model validation tests are conducted 
in the Results section.

Forecasting error evaluation
For each of the 6 periods, each of the 5 methods, 

and each of the  16 price areas, the  error measures 
comparing the  real price with the  forecasted price 
were calculated as:

( )


744 2

1

744

1

1
  

744

1
744

tt
t

tt
t

RMSE price price

MAE price price

=

=

= −

= −

∑

∑

Both RMSE and MAE are among 
the  most‑common error measures for evaluation 
of point forecasts (Weron, 2014). Comparison of 
RMSE and MAE provides additional insights to 
the  comparison of the  investigated methods since 
RMSE emphasizes high residuals, which occur 
usually in the case of price spikes.

RESULTS
This section proceeds as follows:  firstly, ARIMA 

specifications that were found most appropriate 
are described. Secondly, each method is evaluated 
and compared with others. Thirdly, the relationship 
between performance improvement caused by 
hybridization and transmission congestion is 
investigated. For the  whole analysis, software R 
version 3.3.1 (R Core Team, 2016) was used. For 
the ARIMA modelling the R package forecast version 
7 (Hyndman, 2016) and for SVR modelling the  R 
package e1071 version 1.6 were used (Meyer et  al., 
2015).

The automated procedure for fitting ARIMA used 
first differences in 93 of 96 cases (6 periods of 16 
price areas). The  most‑chosen orders (p, d, q) were 
(2,1,2) in 45 %, followed by (3,1,2) in 20 % and (3,1,3) 
in 15 % of cases. ARIMA modeling SVR residuals 
has orders (1,0,2) in 17 % and (1,0,1) in 14 % of cases 
and first differences are used only in 29 cases. Using 

the  STL decomposition, while ARIMA(2,1,2) seems 
dominant in modeling prices, chosen orders for 
modeling residuals span from 0 to 5 for both AR and 
MA.

Fig. 2 shows RMSE for each period‑area pair and   
captures summary statistics. Both of these show 
that, on average, all suggested methods outperform 
the  naïve approach. Interestingly, in 11 % of cases, 
the naïve method yields the best performance. These 
are the  cases when the  price behavior substantially 
changes between the  period used for estimation 
and the  forecasted period. However, the  naïve 
approach is subject to large residuals, thus, it cannot 
be recommended as the only forecasting method. In 
the case of RMSE, single ARIMA and SVR are almost 
never the  best approaches, i.e., hybrid methods 
almost always improve the  forecasting error. This 
result indicates that the investigated hybrid methods 
are beneficial especially for volatile series since 
RMSE overweights large residuals.

Considering MAE, Tab.  II shows that the  result 
is similar to RMSE with the  exception that single 
SVR is the  best model in 28 % of cases and on 
average reaches the  lowest MAE. The  single SVR 
is superior for slightly less‑volatile time series, 
without statistical significance. This finding 
together with superiority of hybrids under RMSE 
supports the theory that a combination of methods, 
which provides additional flexibility, is beneficial 
especially for volatile series.

ARIMA yields relatively high error measures, 
whereas, all methods employing SVR perform on 
average similarly. ARIMASVR performs significantly 
better than ARIMA (t‑test for the difference in means 
in terms of RMSE:  p‑value = 0.000 3). The  value 
added of SVR compared to ARIMA is noticeable 
especially under high volatility. Fig.  3 shows that 
method using SVR can better accommodate large 
prices changes. Conversely, SVRARIMA does 
not provide significant improvement over SVR 
(p‑value = 0.97). It seems that in order to achieve 
a  decent forecasting performance, SVR should 
be included. Hypothesis 1 is thus rejected:  SVR 
predicting ARIMA residuals significantly improves 

2	 The electricity price distribution is obviously external to the improvement of forecasting precision, in addition, it is 
assumed that improvement in forecasting performance results from the changes in price distribution which is for the 
purpose of this exercise sufficiently described by mean, standard deviation and their simple transformations.

II:  Summary statistics.

Statistic Naïve ARIMA SVR ARIMASVR SVRARIMA

RMSE

Mean 10.1 7.5 4.8 4.6 4.8

St. D. 10.6 6.1 5.0 4.6 5.1

Best method1 0.11 0.00 0.02 0.34 0.53

MAE

Mean 2.19 2.07 1.38 1.40 1.40

St. D. 1.20 1.14 0.59 0.60 0.62

Best method1 0.11 0.00 0.28 0.22 0.39
1Percentage of time this method provides the smallest error.
Source: the author.
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forecasting performance in terms of RMSE. 
Hypothesis 2 is not rejected:  ARIMA forecasting 
the  SVR residuals does not provide a  significant 
forecasting improvement. Considering RMSE, 
Tab.  II shows that ARIMASVR yields on average 
the  best performance, whereas, SVRARIMA is 
the  best method in most cases. Nevertheless, 
differences between these two methods are 
not significant. Fig.  4 investigates the  benefit 
of ARIMASVR over other methods using SVR. 

The  largest value added seems to occur for RMSE 
about 15, i.e., for rather volatile time series.

In order to assess the  effect of volatility and 
congestion on performance improvement of adding 
SVR modeling ARIMA residuals, equation 1 was 
estimated via OLS. Performance improvement 
is defined as a  difference between the  RMSE of 
ARIMA and the  RMSE of ARIMASVR for each 
period‑area pair.

Tab.  III section ARIMA vs. ARIMASVR 
shows the  OLS output with robust standard 

2:  Distributions of RMSE.
Source: the author.

3:  ARIMA and ARIMASVR (Jan 2016).
Source: the author.

4:  A comparison of hybrid methods.
Source: the author.
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errors, which overcome any possible issues of 
heteroscedasticity. The  Ramsey’s RESET test 
suggests no misspecification of the functional form 
(p‑value = 0.68). Furthermore, adjusted R2 = 0.81 
indicates that 81 % of the  variation of performance 
improvement can be explained by transmission 
congestion variability, thus providing additional 
evidence of model validity.

Standard deviation and mean are significantly 
linked with forecasting error improvement. 
Using MAE yields significant (p‑value = 0.04) and 
positive coefficient for sd, while the  effect of mean 
is insignificant. Adding RMSE of the naïve method 
as a  proxy for forecasting difficulty is insignificant. 
Positive coefficients indicate higher benefit of using 
SVR predicting ARIMA residuals compared to using 
only ARIMA when mean or variance increases. 
Holding the  mean price fixed, a  higher volatility 
of the  time series by one standard deviation is 
related to an increase of the  difference between 
RMSE of ARIMA and ARIMASVR by 1.55. Holding 
the  volatility fixed, the  effect of mean is 1.05. With 
respect to the size of coefficients, both effects seem 
to be approximately linear. Excluding sd2 and sd3 
from the specification does not substantially change 
the  result:  parameter for sd decreases to 1.13 while 
the parameter for the mean increases to 1.30.

Using performance improvement of 
SVRARIMA over SVR as a  dependent variable in 
equation  1  yields insignificant effects of sd and 
mean, which seems to correspond with very similar 
performance of these two methods. The results are 
provided in Tab. III: SVR vs. SVRARIMA.

Evidence shown in Tab.  III leads to rejection of 
hypotheses 3 and 5 about sufficiency of ARIMA 
modelling in comparison with ARIMASVR, 
whereas, hypotheses 4 and 6 about sufficiency of 
SVR modelling in comparison with SVRARIMA 
are not rejected. It is concluded that benefit of 
ARIMASVR over ARIMA seems to increase with 
transmission congestion.

DISCUSSION
Under RMSE, the hybrid methods provide better 

forecasting results than their single counterparts in 
98 % of the cases. The remaining 2 % are represented 
by SVR. This result of superiority of hybrid methods 
is similar to the  findings of the  current literature. 
Investigation of the  defined hypotheses reveals 
the  insufficiency of ARIMA as the  only forecasting 
method since SVR provides superior results and 
capability of modelling the  ARIMA residuals. 
Moreover, the  value added of combining ARIMA 
with SVR seems to increase for more volatile time 
series and for areas that are subject to substantial 
transmission congestions. Under MAE, the  single 
SVR seems to be the best approach, which together 
with the  RMSE results indicates that additional 
flexibility of hybrid methods improves capturing 
of price spikes at a slight cost of imprecision during 
steady periods.

A coarse benefit analysis of no transmission 
congestion in terms of forecasting precision is 
conducted. The average MAE of ARIMASVR is 1.04 
under no transmission congestion, whereas, for 
all price areas amounts to 1.40. Thus, on average, 
the hourly price would be predicted more precisely 
by €0.36 under no transmission congestion. 
The  costs of imprecise forecasting are part of 
balance costs, which increase the  final electricity 
price due to higher uncertainty.

The absence of transmission constraints would 
cause some volatility and higher prices in the  most 
stable and cheapest areas. In the  data, two Norway 
areas are more precisely predicted than the  System 
price:  Bergen and Kristiansand. These two areas 
are also the  only areas with mean price lower than 
the  System price. Thus, arguably, 13 areas would 
be better‑off and 2 areas would be worse‑off in 
the absence of transmission congestions.

Two limitations of the analysis are worth noticing. 
Firstly, this study is limited to ARIMA‑SVR 
specifications; therefore, it cannot be claimed 

III:  OLS output of equation 1, robust standard errors, dependent variable: performance improvement, 96 observations.

ARIMA vs. ARIMASVR (hyp. 3,5) SVR vs. SVRARIMA (hyp. 4,6)

Variable Coeff. St. E. P−value Coeff. St. E. P−value

intercept −0.13 2.960 4.60e−05 *** 0.32 0.828 0.70

sd 1.55 0.585 0.0098 *** 0.10 0.100 0.30

sd2 −0.03 0.055  0.6200 0.00 0.007 0.94

sd3 0.00 0.002  0.6318 0.00 0.000 0.83

mean 1.05 0.003 0.0005 *** −0.05 0.10 0.07

mean2 −0.03 0.011  0.0017 ** 0.00 0.003 0.60

mean3 0.00 0.000 0.0016 ** 0.00 0.000 0.81

sd×mean −0.03 0.006 5.48e − 06 *** 0.00 0.002 0.67

R2 = 0.83, adj. R2 = 0.81
F−statistic: 58.64 on 7 and 88 DF

R2 = 0.11, adj. R2 = 0.04
F−statistic: 1.53 on 7 and 88 DF

sd: average 9.3, standard dev. 8.1
mean: average 30, standard dev. 9.0

Source: the author.
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that the  best model identified in this research is 
the  optimal forecasting technique. In order to 
address the  optimal model, other approaches 
should be tested, especially machine learning tools 
capable of capturing highly nonlinear behavior, e.g., 
gradient boosting methods or random forests, which 
are still relatively undiscovered by the EPF literature. 
This remains for further investigation.

A second limitation of this study lies in omitting 
general equilibrium effects. Changing transmission 
constraints has likely many consequences, e.g., 
higher forecasting precision that decreases 
the  final price due to lower balance costs, which 
are not considered here and which might affect 
the  forecasting precision. In addition, the  supplied 

quantity of electricity affects the  resulting price, 
hence production planning of an agent. In other 
words, if a  large producer increases the  amount 
of electricity supplied, the  forecasted quantity 
should increase and the price on the market should 
decrease. However, effects of individual agents 
are considered in this research to be sufficiently 
small, which is plausible for small‑ to medium‑size 
producers. One can argue for similar effects on 
the  demand side in the  case of large industrial 
firms. However, the  problem on the  demand side 
seems to be even less important since the  fraction 
of electricity consumed is rather small due to 
households being the major consumer.

CONCLUSION
The aim of the  paper is to investigate circumstances under which the  hybrid ARIMA‑SVR models 
yield superior performance over separate use of each method in the context of short‑term electricity 
price forecasting. In conclusion, using combination of ARIMA and SVR leads to increased forecasting 
performance, which is more pronounced the  higher the  volatility and the  higher the  transmission 
congestion when the congestion is measured by first and second moments of price due to the structure 
of the Nord Pool. When the RMSE is of interest, hybrid ARIMA‑SVR methods appear to be clearly 
superior to single ARIMA or SVR. Interestingly, when the  MAE is of interest, a  single SVR model 
delivers the best performance in many cases. Overall, the performance of methods employing SVR 
is very similar. This finding suggests that the  additional flexibility of hybrid methods over SVR is 
beneficial for capturing price spikes at a slight cost of imprecise forecasting during steady periods. 
Using a single ARIMA under STL decomposition seems not suitable for forecasting due to its inability 
to model irregularities, which are frequent in deregulated electricity markets.
The forecasting performance is lower for areas with higher transmission congestion. One part of 
the total costs of transmission constraints can thus also be seen as a cost of a higher forecasting error. 
By a  coarse calculation ignoring other effects, the  average costs of congestion for the  Nord Pool in 
2013–2016 seem to be about €0.36/MWh.
The ARIMA‑SVR models represent a suitable method for electricity price forecasting, nevertheless, 
other methods should also be considered in the  search for feasible, reliable, and precise hourly 
electricity price forecasting methods. The  analysis suggests that especially approaches capable of 
modeling highly nonlinear behavior could yield decent performance, e.g., gradient boosting methods 
or random forests.
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