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Vehicle’s gearbox is regarded as one of the most crucial elements in a vehicle but it sustains a variety 
of faults such as a broken tooth, misalignment, imbalance, looseness, and even a broken case. Using 
accelerometers, which are mounted on the  case to measure a  vibration signal, we can detect faults 
and monitor the condition but the signals are often complicated and difficult to interpret. Moreover, 
it is costly and almost impossible to change the structure of a gearbox in order to survey, for instance, 
the  dependence of a  vibration signal on the  structure, or types of a  fault. In this paper a  dynamic 
model of gearbox was developed with tooth breakage to study the  capability of simulation using 
MSC.Adams software. In this simulation we focus on the gearbox used in a common military vehicle. 
The simulation was based on a nonlinear contact force to predict what happens to the gearbox in case 
the tooth breaks. 
The contact mechanics model of the  meshing teeth is studied thoroughly by selecting contact 
simulation parameters such as stiffness, force exponent, damping and friction coefficients. To 
simulate the real working environment of the gearbox, simulated bearings were also built in the MSC.
Adams. The paper shows that it is possible to simulate vibration signals by the gearbox model created 
in 3D CAD software and analyze the results in the multi‑body dynamics software MSC.Adams.

Keywords: gearbox, cracked tooth, simulation, model, vibration signal, contact force, MSC.Adams.

INTRODUCTION
In practice the aim of modelling is to understand 

the  physical phenomena, imitate the  behaviour of 
the  examined machine in virtual environments, 
simulate it on a model and then affect its behaviour 
by a  specific way. The  virtual model is just an 
approximation of reality since the real system can be 
very complex and the model might not fit the system 
completely. 

Modelling and simulation are two slightly 
different processes but usually carried out together. 
They are used to make models based on a real object 
and allow us to experiment with these models (see 
Fig. 1).

In the  paper by Novotny, Prokop, Zubik and 
Rehak, 2016, there are introduced advanced 
computational models suitable for developing 
a  modern powertrain and focusing on noise and 
vibration. The  aim is to decide to what extent 
the  model should be accurate in order to describe 

correctly the  vibrational and acoustic performance 
of the powertrain.

The modelling of the  dynamics is really useful 
in case of conditional monitoring, since it allows 
us to simulate a  vibration signal for different 
conditions of a gearbox which sometimes cannot be 
checked in an experimental way. There are several 
methods to simulate the  behaviour of a  gearbox 
such as mathematic modelling (e.g. Matlab 
Simulink), finite element methods (e.g. Ansys) and 
multi‑body dynamic methods (e.g. MSC.Adams). 
The  last approach seems to be the  most suitable 
for a  vibration signal analysis, because it allows us 
to analyse contact force in the time domain even in 
the spectrum which has the ability to express exactly 
the  nonlinear effects of stiffness, gear backlash, 
rotation bearings, eccentricity, misalignment, 
unbalance and other nonlinear phenomena.

MSC.Adams (Automatic Dynamic Analysis of 
Mechanical System) is computing software used for 
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modelling, analysing and optimizing mechanical 
systems called MBS (Multi‑Body System). Other 
systems are Simpack and LMS Virtual.Lab Motion. 
All of them allow us to execute the analysis of 
three‑dimensional bodies. However, there are 
many diff erent algorithms proposed, e.g. teeth and 
body of gear wheels are assumed to be rigid but 
connected by elastic elements, or the calculation 
based on estimating gear noise, or the use of 
a nonlinear contact algorithm between teeth of 
gears and geometric defects, etc. MSC. Adams 
consists of a number of diff erent modules such 
as Adams/View, Adams/Car, Adams/Chassis, and 
Adams/Driveline. The MSC.Adams/View and 
MSC.Adams/Postprocessing are the most common 
modules. The former is used to carry out a virtual 
experiment on a model and the latter is used to 
analyse the results collected from the experiment 
(Mechanical Dynamics, 2008).

A virtual experiment in MSC.Adams is 
presented in the following study. The purpose of 
the experiment is to simulate vibration signals 
when tooth breakage in the gearbox occurs. Tooth 
breakage is one of the most common and dangerous 
operating failures associated with increased noise 
and vibration level, destruction of gears and other 
structures.

Basic procedures needed to accomplish 
the analysis of a vibration signal in MSC.Adams are 
introduced below: 
• Create physical bodies including exact geometrical 

shapes such as length, width, depth, dimension, 
and distance between shaft s.

• Apply physical characteristics such as rotational 
inertia, mass and dynamic friction coeffi  cient.

• Fulfi l kinematics defi nition such as translation and 
rotation.

• Simulation that relates to making motion, forces 
and observing model behaviour.

• Record and analyse results in the MSC.Adams/
Postprocessing (Furch, Glos and Nguyen, 2016; 
Mechanical Dynamics, 2008). 

MATERIALS AND METHODS

Establishment of physical components
This procedure needs to be accomplished by 

3D‑model soft ware such as ProEngineer, Catia, 
Solid Work and Inventor. The last soft ware was 
chosen to model components in the gearbox. 
The advantage of the soft ware is the possibility of 
a parametric modelling process that refers to a set of 
parameters. We can set up a structure, a shape, a size 
and features of parts in the gearbox. In the soft ware 
there are some standardized bodies such as gears, 
bearings and shaft s. Using this method and selecting 
suitable parameters, we can create standardized 
bodies with diff erent specifi cations and meet 
the desired design. As long as basic parameters 
(such as the number of teeth, modulus, pressure 
angle, helix angle, face‑width, diameter, and length) 
are inputted or modifi ed, a 3D geometric model will 
be automatically generated or rebuilt. In the „spur 
gear component generator“ and „shaft  component 
generator“, which are two among many interfaces of 
Inventor, every dimension or other parameters such 
as the number of teeth, modulus, gear ratio, center 
distance (see Tab. I) must be completed by entering 
precise values so that the soft ware can create exactly 
desired components and put them into the right 
position. Because it is known that the parameters 
of a gear are very closely related to each other, this 
work requires good knowledge of the gearbox.

Next, the model needs to be transferred from 
Inventor to MSC.Adams. There are two ways to 
perform the data conversion between Inventor and 
MSC.Adams:
a) Using intermediate types of format (Parasolid, 

Step, Iges, Sat etc.) that can help MSC.Adams to 
identify exactly geometric shapes of components 
created by another soft ware.

b) Direct transfer using interface provided by MSC.
Adams that is able to keep every component, 
which was created in another soft ware, as 
independent part in MSC.Adams. This feature 
is very useful for next steps and is adopted to 
perform data conversion. In MSC. Adams click 
File→Import→.iam, and the Inventor fi le can be 
successfully imported into MSC.Adams.

Real object Computer model Model realization
Modelling Simulation

1: Diagram of modelling and simulation (Furch, Glos and Nguyen, 2016)
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I:  Basic geometrical data of the gearbox used for modelling (Russia Ulyanovsk JSC, 2000)

Description Gear Module (mm) Face width 
(mm) Types of tooth Helix angle (0) Number of 

teeth

The constant-mesh 
gears

Drive gear 3 20 Helical 28.85 Z0R = 15

Driven gear 3 20 Helical 28.85 Z0N = 32

1st speed gear
Drive gear 3.5 20 Spur Z1R = 15

Driven gear 3.5 20 Spur Z1N = 29

2nd speed gear
Drive gear 3 20 Helical 28.85 Z2R = 21

Driven gear 3 20 Helical 28.85 Z2N = 26

3rd speed gear
Drive gear 3 20 Helical 28.85 Z3R = 27

Driven gear 3 20 Helical 28.85 Z3N = 20

Reverse gears
Drive gear 3.5 15 Spur ZRR = 15

Driven gear 3.5 15 Spur ZRN = 19

Underdrive 
engaging gears

Drive gear 3 15 Spur ZER = 24

Driven gear 3 15 Spur ZEN = 37

Drive gears to real 
and front axle

Drive gear 3 15 Spur ZAR = 27

Driven gear 3 15 Spur ZAN = 34

Driven gear 3 15 Spur ZAN = 34

2:  Model of the gearbox in MSC.Adams (Two-wheel-drive mode)
Legend: A. Model with all constraints; B. Model with all cases; 
1. Input shaft with constant-mesh drive gear; 2. Single row deep groove ball bearing SKF 6208; 3. Roller bearing SKF NU 
2204 between the input shaft (1) and the output shaft (6); 4. 3rd speed driven gear; 5. 2nd speed driven gear; 6. Output shaft 
of gearbox; 7. 1st speed driven gear; 8. Double row angular contact ball bearing SKF 3207BN; 9. Rear axle and underdrive 
engaging gear; 10. Rear axle drive shaft with gear; 11. Single row deep groove ball bearing SKF 6307; 12. Layshaft of transfer 
box with idle gear; 13. Front axle drive gear; 14. Front axle drive shaft with gear; 15. Transfer gearbox case; 16. Single row 
deep groove ball bearing SKF 6306; 17. Layshaft (or countershaft) with 1st speed drive gear; 18. 2nd speed drive gear; 19. 3rd 
speed driver gear; 20. Constant-mesh driven gear; 21. Single row deep groove ball bearing SKF 6305; 22. Gearbox case; 
23. Reverse gears.
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When the  gearbox model is imported with 
the above method, each component stands by itself 
in MSC.Adams and has no connection with another 
one. Because of this, they will not constitute a  real 
virtual model and will not work as required. Next, 
two procedures need to be fulfilled: 
a)	 Adding material parameters, so that the physical 

data of gears and shafts such as centroid position, 
mass, stiffness and the  rotation inertia defined 
as equation (1), can be obtained (Norton and 
Karczub, 2003). 
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Where
m	���������mass of the components,
r	�����������radius of the components,
L	����������width of the components,
xx	��������rotating axis,
yy, zz	���perpendicular axes with rotating axis.

b)	 Adding torque and kinematic constraints. If 
the  torque and the  motion applied to the  gears 
need to be transferred to the  shaft, a  fixed joint 
is added to every gear wheel and a corresponding 
shaft. A revolute and cylindrical joint is added to 
every shaft, so that it can rotate around its own 
axis. A constant rotational motion is applied to 
a revolute joint on the input shaft. This represents 
a  virtual rotation from the  engine and resistive 
torques which are applied on the output shafts as 
load from the axles. All the SKF virtual bearings, 
which were chosen on the basis of the equivalent 
parameters of the real Russian bearings, are also 
added to the model (see Fig. 2).

Determination of the contact force 
parameters

Although numerous variants of gears dynamics 
modelling can be considered, we selected 
the approach that takes into account the phenomena 
occurring only inside a  gearbox. This approach is 
used for calculating dynamic contact forces between 
teeth. By doing so, it can identify the  signs of teeth 
failures. Meshing stiffness, which depends on 
the number of intermeshing teeth and the deflection 

of a tooth by load during meshing, varies in time in 
real gears and is theoretically changed according to 
a parabolic function and determined by parameters 
of contact algorithm. 

There are two types of contact that can be 
modelled between the  surfaces of the  contacted 
bodies. The first one is a discontinuous contact such 
as a  falling ball bouncing on the  floor. The  other 
one is a  continuous contact where the  contact is 
defined as a  nonlinear spring (see Fig.  3) (Meagher, 
WU and KONG, 2010). Both of them are respectively 
available in MSC.Adams/View as the  Restitution 
Method which calculates the  collision force by 
a  recovery coefficient, and the  Impact Method 
which uses the  stiffness and damping coefficients 
to calculate the  contact force. Considering 
the  essence of the  problem, the  latter is adopted. 
In this algorithm gears and shafts are considered to 
be rigid bodies but contact surfaces between teeth 
are flexible. In order to simulate vibration signals 
during meshing from pairs of gears in the gearbox, 
contact force and Coulomb friction between teeth of 
two gear wheels were assumed.

In the  Impact Method algorithm calculating 
the contact force can be defined as follows (Norton 
and Karczub, 2003):
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In the  equation (2), S is a  step function, x0 − x is 
the deformation in the process of contact‑collision. 
This equation expresses that the  contact will not 
occur and F = 0 while x ≥ x0 (see Fig. 4). The contact 
will occur while x < x0 and the  value of contact 
force is related to other parameters such as stiffness 
K, deformation x0 − x, contact force exponent e, 
damping coefficient C and penetration depth d 
which is the maximum value of x0 − x. 

The equation (2) also implies that the contact force 
defined in MSC.Adams is composed from two parts, 
an elastic component K(x0 − x)e acts like a nonlinear 
spring and the other is the damping force CS(dx / dt) 
which is a  function of the  relative deforming 

3:  Contact force is defined as a nonlinear spring (Norton and Karczub, 2003). 
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velocity or a  cubic function of penetration depth 
d. In order to avoid the  function discontinuity 
caused by the  dramatic variation of the  damping 
force while contact‑collision occurs, the  damping 
force is set to zero when the  penetration depth of 
the  two contacted bodies is zero and approaches 
to a  maximum value Fmax when the  specified 
penetration depth d is reached.

All of the contact force parameters are considered 
as follows:
1.	 According to the Hertzian elastic contact theory, 

the stiffness of the two contacted bodies could be 
described by a pair of ideal contacted cylindrical 
bodies and could be defined as follows (Norton 
and Karczub, 2003):
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In the  equation (3), R1 and R2  –  equivalent 
radius of two gear contact points, E*  –  equivalent 

Young’s modulus of two contacting bodies, i – gear 
ratio, d1  –  diameter of standard pitch circle, α’t 

and αt  –  transverse pressure angle at engaged and 
standard pitch circle, β and βb  –  helical angle at 
the pitch and base circle, ν1 and ν2 – Poisson ratio of 
drive gear and driven gear, E1 and E2  –  the  Young’s 
modulus of the material of two gears respectively. As 
a  result, the  contact stiffness can be calculated and 
listed in the Tab. II.
2.	 The gears of the gearbox are assumed to be made 

from alloy steel with Young modulus E = 2.1 × 105 
N/mm2 and Poisson ratio ν = 0.29 (Fang, 2013).

3.	 Force exponent e = 1.5 is based on the calculated 
speed and it is the  result of numerous trial 
simulations.

4.	 Penetration depth d = 0.1 mm is based on 
the numerical convergence in MSC.Adams. 

5.	 Damping coefficient C = 3,000 Ns/mm because, 
generally speaking, the  damping coefficient 
ranges from 0.1 to 1 % of the  stiffness K (Wu, 
Sommer and Meagher, 2016).

6.	 Between gears there is a  friction force referred 
to as Coulomb friction in MSC.Adams, 
The  variables such as dynamic or static friction 
coefficient and related velocities are chosen 
from mechanical handbooks; it is expected that 
the gearbox is lubricated well (see Tab. III).

4:  The  contact force is related to the  deformation x, x0 (left) and the  dependence of damping force F on penetration depth d (right) (Kong, 
Meagher, Xu, Wu and Wu, 2008).

II:  Contact stiffness of pairs of gear (K)

Pair of gears Values (N/mm3/2)

The constant-mesh gears 6.48 × 105

1st speed gear 6.84 × 105

2nd speed gear 5.59 × 105

3rd speed gear 5.12 × 105

Reverse gears 6.98 × 105

Underdrive engaging gears 7.22 × 105

Drive gears to real and front axle 7.56 × 105

III:  The variables for defining the friction force (Kong, Meagher, Xu, Wu and Wu, 2008).

Variables Values

Static friction coefficient (µs) 0.1

Static transonic speed (vs) 1 (mm/s)

Dynamic friction coefficient (µd) 0.08

Dynamic transonic speed (vd) 10 (mm/s)
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Algorithms for the dynamic simulation
MSC.Adams offers four solvers (the Gstiff, 

Wstiff, Dstiff and Constant‑BDF) to solve 
the  Differential‑Algebra Equation (DAE) for 
the  multi‑body dynamic simulation. All of them 
use multi‑step, variable order algorithms and apply 
one of these three integration formats including 
the  Index3 (I3), Stabilized Index 1 (SI1) and 
Stabilized Index 2 (SI2).

The Gstiff and the  Wstiff use a  variable step 
and fixed coefficients. The  former helps us to 
calculate faster with higher accuracy, but when 
computing velocity, they can make an error which 
might excite discontinuities in acceleration. 
Because of this, the  error must be controlled by 
limiting the  maximum step during the  simulation. 
The latter is more useful and stable because it could 
be modified according to variable steps without 
any accuracy loss, but it requires more calculated 
time than those by the  Gstiff. The  Dstiff algorithm 
is similar to the  Wstiff, but it allows us to choose 
only the  integration format Index3. Unlike them, 
the  Constant‑BDF algorithm uses fixed steps, so 
it is very useful when SI2 format is selected with 
short step. Although it does not calculate as fast as 
the  Gstiff and Wstiff, it also reaches high accuracy 
and it is not as sensitive to the  discontinuity of 
the acceleration and force as the Gstiff (Mechanical 
Dynamics, 2008).

Integration formats differ a lot, for instance the I3 
monitors only the  error of the  displacement and 
other state variables of the differential equations, but 
not the  velocities and constrained reaction forces. 
Therefore, its accuracy when calculating velocities, 
acceleration and constrained reaction forces is not as 
high as that of the others. The SI1 is able to monitor 
all state variables such as displacement, velocity and 
Lagrange multiplier by introducing the  velocity 
constrained equations instead of acceleration 
constrained equations. Therefore, it calculates 
quite accurately but it is very sensitive to the models 
with friction and contact problems. Unlike the  SI1, 
the SI2 is able to control the errors of the Lagrange 
multiplier and velocity by considering the  velocity 
constrained equations, so more accurate result 
could be obtained for the velocity and acceleration 
computation.

Based on the above information about the solvers 
and integration formats, the  Wstiff solver with SI2 
integration is adopted for the dynamic simulation of 
the gearbox. 

Algorithms analysing the contact force
Because the function of contact force is periodic, 

a Fourier transform (FFT) will be used to decompose 
it into a sum of simple harmonic functions, namely 
sines and cosines. Theoretically, the  FFT can be 
defined as follows (Bakir, 2008 ):
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where x(t) is the function of contact force with period 
T, an and bn are constants called the  coefficients 
of the  transform and given by the  Euler formulas 
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However, in practice, the function of contact force is 
a set of data with discrete and finite values xn (n = 1, 2, 
…). To perform the analysis using these finite values 
of discrete data, the discrete Fourier transform (DFT) 
should be applied (Bakir, 2008 ):
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where N is the number of xn in a constant interval Δt 
and Xn is called DFT of the discrete values x0, x1 … xN−1. 
Equation (8) will transfer correspondingly finite 
values on the  time axis to the  discrete spectra on 
the  frequency axis. DFT can also use real numbers 
instead of complex ones (Bakir, 2008 ):

1

0
1

0

1 2
cos

1 2
sin

N

n k
k

N

n k
k

nk
A x

N N

nk
B x

N N

π

π

−

=
−

=


=



 =


∑

∑
 n = 0,1,2….N−1	 (9)

where Xn = An+jBn.
We apply a  window function in the  work in 

order to provide the  discrete values that appear to 
be continuous and periodic. Discontinuities are 
“filled in” by forcing the  function of contact force 
to be equal to zero at the beginning and the end of 
the calculated period. 

There are many available windowing functions 
such as Rectangular (it is equivalent to saying 
that no window was used), Gaussian, Hamming, 
Blackman‑Harris and Hanning. If N is used to 
represent the  width of a  signal sample, these 
windows w[n] are defined in the range 0 ≤ n ≤ N − 1 
as (note that outside 0 ≤ n ≤ N − 1 then w[n] = 0 for 
all cases) (Chitode, 2008):
Rectangular window:

w[n]=1, 0;	 (10)

Hanning window:

2
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w n
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Hamming window:
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Gaussian:

22
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Blackman‑Harris window:
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After many times of trial calculation, 
Blackman‑Harris windowing function is used for 
the work.

The operating conditions of the gearbox 
during the simulation

The gearbox is used to transfer the engine power 
and the  moment to the  axles of the  vehicle. In 
the process of operation it could suffer from heavy 
stimulation of the  engine, the  axles, the  clutch and 
other resources such as oil, backlash, clearance. 
The stimulation makes the changes of the dynamic 
load very complex which is the  main reason 
of vibrations, impact, noise and other signs. 
The  selected operating conditions are based on 
the working characteristic of the gearbox in the field 
and they are among the  huge number of possible 
choices which can be applied to the virtual gearbox.
•	 Rotation speed n = 1,500 rpm is applied on 

the input shaft (Fig. 2 position 1). 
•	 Position of 3rd speed gear (i = 1.58) is chosen in 

the gearbox and two‑wheel‑drive mode is chosen 
in the transfer box. 

•	 Load torque can be calculated from the maximum 
torque of the engine used on the vehicle (166.7 Nm) 
and the  respective ratio (i = 1.58), then the  load 
torques of 263.386 Nm is applied on the  output 
shaft (Fig. 2 position 6). 

•	 Other parameters are applied as 
follows:  the  simulation time (end time) 1 s and 
the simulation step (step size) 0.0001 s.

RESULTS AND DISCUSSION

Gear mesh frequencies (GMF)
The gear mesh frequency also called “tooth mesh 

frequency” is the  rate at which gear teeth mesh 
together in a  gearbox. It is equal to the  number of 
teeth on the gear times the rotation speed of the gear 
(Norton and Karczub, 2003):

fm = f.Z,	 (15)

where fm is the  gear mesh frequency (Hz), f is 
rotational frequency of the  gear (Hz) and Z  is 
the number of teeth. 

The number of teeth on the  drive gear times 
the speed of the drive gear must equal the number of 
teeth on the driven gear times the speed of the driven 
gear. As the  pinion rotates against the  driven gear, 
the individual cycles of the frequency generated are 
a profile of the individual teeth meshing. Gear mesh 
frequencies of gears in the gearbox were calculated 
as follows (see Tab. IV):

Simulation results of gear teeth contact force
The top of Fig. 6 shows the graph of the gear teeth 

contact force for the  pair of 3rd speed gears under 
normal conditions.

It is easily observed that the  above results seem 
to fit the  theoretical values (in Tab. IV) well. Note 
that values of the  GMF are always repeated with 
an integer multiplier also known as harmonics. 
The  second and the  third harmonics are very 
important. In the  spectrum of 3rd speed gears (see 
top of Fig. 6), the second harmonics of GMF (2fm3) has 
a  high amplitude with respect to the  fundamental 
(fm3) and the  third harmonics (3fm3) which would 
indicate a  backlash‑type problem. In other words, 
the  gears may have too much backlash, or one of 
the  gears may be oscillating. It is known that there 
are 4 pairs of gears used to transfer power from 
the  input shaft to the  layshaft and the  outshaft 
(see Fig.  2), but not all of them can have the  same 
perfect mesh condition. In either cases, the  gears 
are meshing on both sides of the teeth. This double 
mesh generates the second harmonics, the phase of 
which is 1800 out of the phase with the fundamental.

Next, a  part of a  tooth is removed, as shown 
in Fig.  5, on the  drive gear of 3rd speed gear to 

IV:  The GMF in 3rd speed gear, two-wheel-drive mode and 1,500 rpm on the input shaft

Description Gear Number of teeth Values (Hz)

The constant-mesh gears
Drive gear Z0R = 15

fm0 = 375
Driven gear Z0N = 32

1st speed gear
Drive gear Z1R = 15

fm1 = 175.78
Driven gear Z1N = 29

2nd speed gear
Drive gear Z2R = 21

fm2 = 246.094
Driven gear Z2N = 26

3rd speed gear
Drive gear Z3R = 27

fm3 = 316.406
Driven gear Z3N = 20
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simulate a  tooth breakage in the  gearbox. Thanks 
to the  virtual model, the  cracked tooth may be 
modelled more accurately than the one expressed in 
the Fig. 5.

Each type of fault produces a  unique form in 
the  spectrum. As a  general rule, the  distributed 
faults such as eccentricity and gear misalignment 
will produce sidebands and harmonics that have 
high amplitude close to the  GMF. Unlike this, 
the localized fault such as a cracked tooth produces 
sidebands that are spread more widely across 
the  spectrum. Each gear has one tooth in mesh, 
one tooth going out of mesh, and one tooth going 
into mesh. When the broken tooth goes into mesh, 
a  pulse is generated. The  next tooth is good and 
stops the system from vibrating. Therefore the pulse 
generated by a broken tooth is well damped.

Fig.  6 describes the  frequency spectra taken 
from the  3rd speed gear. The  spectral line at fm3 is 
the  fundamental GMF, the  spectral line at 2  fm3 
is the  second harmonics, the  spectral line at 3  fm3 
is the third harmonics. It is also observed that there 

are fractional gear mesh frequencies at ½ fm3, 1½ fm3, 
2½ fm3, etc. which are the result of the pulse generated 
by the broken tooth on the drive gear, more precisely 
speaking, they are caused by amplitude modulation 
which occurs because of the  broken tooth. This 
graph also shows that the amplitude of the spectral 
line does not indicate the  presence of the  broken 
tooth, but the  existence of harmonics and 
sub‑harmonics does it. Theoretically, the  presence 
and the  density of these harmonics reflect quite 
accurately the existence of faults and the variability 
in technical condition. By comparing the  graphs in 
Fig. 6, it can be discovered that the gear tooth break 
fault has altered the harmonic distribution.

When the  fault becomes more serious, 
the  amplitudes of harmonics are not unchanged 
as illustrated at the bottom of Fig. 6. However, note 
that beside the  basic harmonics we can observe 
the  existence of the  huge number of spectral lines 
that have different frequencies of rotational speed 
of the layshaft. These spectral lines are quite clear in 
the graph and demonstrate the broken tooth.

5:  Virtual tooth breakage on the pinion of 3rd speed gear
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CONCLUSION
We can conclude that the  use of multibody dynamic software is really effective and accurate to 
simulate not only the operation and the fault of gears, but also any type of fault in a gearbox. However, 
it is a very complicated process. Firstly, the 3D model of an object, which is accomplished in a CAD 
program, must be transferred successfully into a multibody dynamic environment. Secondly, physical 
characteristics and all of the constraints must be applied reasonably and accurately. Thirdly, a suitable 
algorithm with a lot of parameters must be chosen exactly. Finally, the contact force can be analysed 
and transferred by FFT using Post processing. The process allows us to choose many parameters of 
meshing such as stiffness, damping, friction force. The results show that any fault, defect or damage in 
the gearbox can be simulated and detected by the spectrum analysis.
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6:  The contact force of 3rd speed gear under a normal condition (top), a cracked tooth (middle), and a more seriously cracked tooth (bottom)
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