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Abstract
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Time management has a  crucial role in organizations and also in our personal lives. Managerial 
scheduling is an important tool for the time management, especially It can serve as a tool for the first 
phase, of time management - namely for effective planning. This paper focusses on finding the best 
possible setting for determining significant the  best layout for activities according to the  criteria 
of urgency and importance using a  modified steepest ascent method, which can be referred as 
dynamic scheduling. This term indicates the nature of the method; wherein the experimental design 
space is changed to look for the  best conditions for adjustment factors influencing a  managerial 
process. Existing methods for layout optimization mentioned in the  literature and conventionally 
implemented in practice have only shown local optima.
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INTRODUCTION
The  objective (of most industrial experiments) is 

to set the  levels of design factors that will optimize 
the  yield. This area of production statistics is 
mentioned as response surface methodology (RSM), 
it was described by Wilson and Box. Most RSM 
applications involve sequential progress. There are 
three actions that are carried out during the  use 
of the  RSM, which are the  following: A  screening 
experiment has a  goal to reduce many potentially 
significant factors to relatively few potentially 
important factors that influence the  yield. These 
type of experiments to be run more efficiently in 
the next phases, and fewer runs are required; Using 
knowledge from the  first step to moving through 
the  experimental area in an attempt to approach 
the  local optimum. The  most general method is 
known as steepest ascent; Optimization based 
on the  progress, where a  small region close to 
the  optimum has been identified using the  second 
step; a  model is then estimated that approximates 
a real response function.

This model is typically a second‑order model used 
to approximate the curvature near the optimum, and 
this can be used to determine optimal conditions 
for the  design factors (Montgomery, 2005). In 
split-plot designs, a  particular type of restricted 
randomisation occurs throughout the  experiment. 
A  simple factorial experiment can lead in a  split-
plot type of design because of the  way in which 
the  experiment was executed. In many industrial 
experiments, three situations often arise, as follows:

Some of the  factors of interest can be hard 
to modify while the  rest of factors is easy to 
vary. Therefore the  treatment combinations for 
the experiment which is run should be determined 
by the  ordering of these hard to modify factors. 
Experimental units can be processed together as 
a batch for one or more of the factors in a particular 
treatment combination; Experimental units should 
be treated individually, one right after the other.

It means the same treatment combination without 
resetting the  factor settings for the  following 
treatment combination. A  structure of the  steepest 
ascent progress can complicate all three steps 
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of an RSM problem. Recently, many researchers 
have considered this issue. Lucas and Ju (1992) 
provided a  simulation study to investigate the  use 
of split-plot designs in industrial experiments. 
Their results confirmed that steepest ascent designs 
produce increased precision for the subplot factors 
while sacrificing precision for the  whole plot 
elements. Box (1996) explained that completely 
randomized experiments are often impractical in 
industry; in contrast, he indicated that split-plot 
experiments are often extremely efficient and easier 
to run. To illustrate the  difference in the  analysis, 
Lucas and Hazel (1997) ran the  known paper-
helicopter experiment as a CRD and as a split plot. 
Letsinger, Myers and Lentner (1996) introduced 
randomization designs (BRD), which are designs 
that have two randomisations, making them 
similar to split-plot designs. Vining, Kowalski, and 
Montgomery (2004) proposed central composite 
designs that were specifically designed for split-
plot experiments. They also provided a  general 
proof showing that for certain design conditions, 
the  ordinary least squares coefficient estimates 
are equivalent to the  generalized least squares 
coefficient estimates for second-order models. 
Kowalski, Vining, Montgomery and Borror (2004) 
modified the proposed central composite designs of 
Vining, Kowalski and Montgomery (2004) to model 
both the process mean and variances within a split-
plot structure. Moreover, Bisgaard and Steinberg 
(1997) focussed on a  design algorithm to obtain 
D-optimal split-plot designs. They showed that 
the  design matrices for the  D-optimal split-plot 
designs and D-optimal CRDs are typically different; 
moreover, they clarified that split-plot experiments 
are often more efficient than CRDs Huang, Chen 
and Voelkel (1998) and Bingham and Sitter (1999a) 
discussed minimum-aberration (MA) designs for 
steepest ascent experiments; in these works, both 
the  whole-plot and subplot factors had two levels. 
The researchers provided methods for determining 
the  MA designs and provided tables for various 
combinations of whole-plot and subplot factors. 
Some design issues with two-level fractional–
factorial split-plot experiments, including where 
to split and where to fractionate, were presented in 
Bingham and Sitter (2001).

Moreover, a  theoretical justification for 
these types of split-plot designs was described 
in Bingham and Sitter (1999b). Schoen (1999) 
proposed a method for manipulating the division of 
contracts over the different error strata of two-level 
experiments with nested errors. Also, Goos and 
Vandebroek (2001) proposed an exchange algorithm 
to obtain D-optimal split-plot designs. They showed 
that the design matrices for the D-optimal split‑plot 
designs and D-optimal CRDs are typically different 
and that split-plot experiments are often more 
efficient than CRDs. Kowalski (2002) considered 
split-plot experiments in the  context of robust 
parameter design. He constructed 24-run designs 
in two ways, namely by using the  properties 

of a  balanced incomplete block design and by 
semi‑folding a  16-run design. The  main objective 
of the  present paper is to address managerial 
scheduling optimization using the  steepest ascent 
method when the experiment is conducted as a split 
plot.

METHODOLOGY AND DATA

The Steepest Ascent Method
The steepest ascent method involves moving 

through the  experimental region along a  path that 
yields increases in the  response. After a  first-order 
model has been fit, the regression coefficients βj from 
the  model are used to determine the  coordinates 
along the  path. The  movement along the  path of 
steepest ascent is proportional to the  magnitude of 
the  regression coefficient, with the  direction based 
on the  sign of the  coefficient (Montgomery, 2005). 
Assuming that the first‑order model is fitted, then

y = β0 + β1x1 + β2x2 + … + βkxk	 (1)

The path of steepest ascent moves a  distance 
r away from the  design centre in the  direction 
of the  maximum response with the  spherical 
constraint .

The maximisation procedure of the  response 
function uses Lagrange multipliers. Then

(2)
 

where λ is the  Lagrange multiplier. 
The  maximisation requires taking the  partial 
derivatives of Q with respect to each xj, as well as with 
respect to λ. Setting these partial derivatives equal 
to 0 and solving yields xj = βj / 2λ (for j = 1, 2, … , k), 
which gives the  coordinate of xj on the  path of 
steepest ascent. See Myers and Montgomery (1995) 
for more details.

Dynamic planning benefits over existing 
(conventional) approaches (described in 

the literature)
Dynamic planning approach is suitable for 

the  assumption that the  research is experimenting 
with a  process or production system (perhaps 
a  new economic plan or process). Because initial 
approximation of operational states of the  system 
is not often close from the  true optimum, 
the investigation goal should be to quickly approach 
to the  general surroundings of the  total optimum 
using trial progress.

Therefore the  aim of the  effective planning 
is not to changeable settings that provide us an 
optimal response but to search for a new operating 
area in which the  investigation process is usually 
refined from the  economic standpoint. In this 
case, the  economic benefit (of using this dynamic 
planning approach compared with conventional) 
is equal to 191 – 168 = 23 thousand CZK. This 
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represents the percentage difference equal to 13.7 of 
the gap between traditional and dynamic scheduling 
techniques.

Dynamic planning using the Steepest Ascent
The procedure is shown in the following example. 

Monitored response Y depends on two factors, 
where x1 is the importance of the task (measured in 
thousands of monetary income in CZK) and x2 is 
the urgency of the task (measured in the remaining 
days to the deadline). We will complete a design with 
three central points for a full schedule (see Table I).

RESULTS
The following figure is used to visualise 

the  process of coding and decoding of two 
the factors.

The coding and decoding equations are as follows:
For x1,

(3)
 

For x2,

(4) 

Effects of a factor can be calculated as the average 
value of response for upper level of the  factor 
minus the  average value of the  response factor for 
the  lower level of the  factor. Let the  letters (1), a, b 
and ab represent all four combinations of the levels 
of the two factors (A and B), and let n be the number 
of replications of this experiment. Then, for 
the estimation, the effect of the ‘A’ factor is valid, as

(5) .

For our case calculation, the effect of the factors is

(6) 

(7) 

The mean values of the response Y in the first plan 
also include the response of the central points:

(8) 

The linear model includes the following equation:

(9) 

The direction of the  movement is determined by 
a vector with coordinates that are factor coefficients 
x1 and x2 in the linear model:

(10) (39400, 4500).

We can adjust the coordinates to simplify further 
calculations as

(11) 

Multiples of these coordinates are coded values 
of factors. These points will be used in exploratory 
trials.

Because the  goal is to maximise Y as the  new 
centre point with the  coded values’coordinates (3; 
26.28), the new centre in real coordinates is then

(12) 

We set a  wider spread of values around a  new 
centre point, setting upper and lower limits to 
obtain more space for analysis, as follows:

The coding and decoding equations are as follows:
For x1,

(13) 

For x2:

(14) 

The second plan is shown in Table III.

170 175 180

--- --o-- ------- --o-- ------- --o-- ------- x1

–1 0 +1

127.5 130 132.5

--- --o-- ------- --o-- ------- --o-- ------- x2

–1 0 +1

1:  The conversion of coded values to operating values.

180 190 200

--- --o-- ------- --o-- ------- --o-- ------- x1

–1 0 +1

140 145 150

--- --o-- ------- --o-- ------- --o-- ------- x2

–1 0 +1

2:  The second conversion of coded values to operating values .
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For our second plan calculation, the  effects of 
the factors are as follows:

(15) 

(16) 

The mean values of the response Y in the first plan 
also include the response of the central points:

(17) 

In the  second plan, the  linear model has 
the following equation:

(18) 

I:  Monitored Response Y Depends on Two Factors, x1 and x2

Trial
Operating values Coded values Response (mean 

of revenue CZK)X1 X2 ξ1 ξ2

1 170,000 127.5 -1 -1 154,300

2 180,000 127.5 1 -1 160,300

3 170,000 132.5 -1 1 164,600

4 180,000 132.5 1 1 168,000

5 175,000 130.0 0 0 160,300

6 175,000 130.0 0 0 164,300

7 175,000 130.0 0 0 162,300

II:  Coordinates for the Exploratory Experiment Results

Run X1 coordinate X2 coordinate Response Y
(mean of revenue CZK)

1 1 8.76 174,300

2 2 17.52 = 2 × 8.76 179,800

3 3 26.28 = 3 × 8.76 186,500

4 4 35.04 = 4 × 8.76 167,400

5 5 43.8 = 5 × 8.76 158,700

III:  The Second Plan by Dynamic planning

Trial
Operating value Coded value

Response Y (CZK)
X1 X2 ξ1 ξ2

1 180 140 –1 –1 178,000

2 200 140 1 –1 184,000

3 180 150 –1 1 191,000

4 200 150 1 1 177,000

5 190 145 0 0 189,000

6 190 145 0 0 186,000

Because the variance of general response is greater than the square of the difference between the mean 
response and the response of the central points, the procedure is over.
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DISCUSSION AND CONCLUSIONS
The aim of the  paper was to introduce a  dynamic method for management activities planning. 
The method used two variables - urgency and time priority. Dynamic scheduling can be here mark 
used because the optimal allocation of resources does not take place in only one feasible area, but 
the method allows to search other areas of potential solutions. The advantage of the method is based 
on its application because it can be applied without specialized software and also permits to perform 
more complex solution than an optimization using convection methods (e.g. linear programming or 
factor analysis).
Often, due to cost or time constraints, it is not feasible to completely randomize an experiment, and 
this is especially the case in managerial scheduling. In such a situation, some factors are hard to change. 
Many tests in the industry are RSM studies, where the objective is to identify the optimal conditions 
for the  design elements. One important step in an RSM study is moving through the  region using 
the path of steepest ascent toward an area where the optimum lies. It would be virtually impossible 
to run one operate at a  time in a  split-plot setting because of the  randomization limitation. Thus, 
we have introduced a  simplified procedure based on the  steepest ascent principle without using 
Lagrange multipliers; this method can be used to handle managerial scheduling without complicated 
calculation.
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