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Abstract
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Driver’s infl uence on kinematics of articulated bus. This paper studies kinematics properties of the 
particle coach as function of driver’s activity. The main goals are the prediction of the trajectory, the 
computation of the vector of velocity of each wheel as a function of the real velocity vector of the 
midpoint of the middle axle and the real curvature of the bus trajectory. The computer algebra system 
Maple was used for all necessary computations. Article is divided into four main parts. In the fi rst part 
are derived integral relations describing trajectory of the middle axes midpoint as a function of the 
absolute value of the velocity and trajectory curvature. At the second part is computed joint trajectory 
and diff erential equation describing relation between joint position and position of the midpoint of 
the rear – towed axle. At the third part is shown how to integrate such system of integral-diff erential 
equation using Runge-Kutta method and how to estimate proper size of the time step. In the fi nal 
part is shown how to compute curve passing time and graphical results of the numerical solution are 
presented.

kinematics, trajectory curvature, generalized tractrix, system of diff erential equations, numerical 
integration, Maple

Classical problem of kinematics
In the following computations we should use 

these main variables: X(t), Y(t) – general coordinates 
of the moving body, later coordinates of the 
midpoint of the central axle of the articulated bus. 
x(t), y(t) – coordinates of the midpoint of the towed 
– rear axle. (t), (t) – coordinates of the joint of the 
bus. L – constant distance between midpoint of the 
rear axle and joint. k – constant distance between 
midpoint of the central axle and joint, see Fig. 1.

The classical problem of kinematics is the 
computation of the speed V(t) and the acceleration 
vector A(t)  of a body as a function of time when 
the location of the body is given by the functions 
P(t) = [X(t), Y(t)]]. The next step is the computation 
of the tangential acceleration At(t), which changes 
the absolute value of the velocity and the normal 
acceleration An(t), which changes the direction of the 
velocity. And fi nally, the function of the center of the 
osculation circle of the trajectory C(t) and its radius 
R(t) are derived. 

These functions can also be found in (BRAND 
1947, SPALLEK 1980, OR WEBFYZ).

The infl uence of the driver
The driver controls the bus using the gas and 

the brake pedal – he controls the absolute value of 
the velocity of the bus |V(t)|. Furthermore – using 
the steering wheel he controls the radius of the 
osculating circle R(t), on which the bus is currently 
moving. For further calculations it is useful to use 
the inverse value of the radius of the osculation 
circle – the curvature of trajectory (t) = R(t)−1. By 
combining these two controls the bus driver keeps 
the bus moving smoothly on the road.

MATERIALS AND METHODS

Inverse problem
Let us assume that we know the temporal behavior 

of driver’s operations. Thus we know the functions 
of the speed magnitude |V(t)|= v(t) and curvature (t). 
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Then the problem is to compute the trajectory of the 
bus and the related kinematics variables. For this we 
need to solve a non-linear system of two ordinary 
diff erential equations of second and fi rst order, they 
are solved in (BARTOŇ, 2011, or KRUMPHOLC, 
2012).
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A� er some algebraic manipulations the equations 
(1) are transformed to an explicit system of two 
diff erential equations of order two:
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Given an initial velocity v0 = |V(0)| and its initial 
direction defi ned by the angle 0 and the initial 
position of the bus [X0, Y0], the solution of (2) can 
be found to be, see (BARTOŇ, 2011; KRUMPHOLC, 
2012).
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This is an analytic solution, however, even for 
simple functions and it will not be possible to 
compute explicit expressions for the integrals. 
A considerable advantage of this result is that it 
allows to numerically integrate the position for 
any given time. We have not to be concerned 
with accumulation of rounding errors as e.g. by 
integrating the system (2) with some numerical 
methods, like Runge-Kutta, see (RALSTON 1978, 
REKTORYS 2000).

Generalized tractrix as model of the trajectory 
of the rear axle

The distance between joint of the articulated bus 
and the midpoint of the middle axle is k. Trajectory 
of the joint is given by [(t),  (t)] and can be 
expressed as, see Fig. 2.
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Trajectory of the midpoint of the middle axle is 
given by [X, Y] and the trajectory of the centre of 
the rear axle given by [x, y] – the towed axle – is to 
be computed, see Fig. 1 and Fig. 2. The distance 
between the joint and midpoint of the rear axle has 
a constant distanceand the velocity vector of the 
center of the rear axle has to pass the joint, see Fig 2. 
These conditions may be expressed as:
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From Equations (5) we obtain the system of 
diff erential equations [ẋ, ẏ], see (GANDER, 2004).
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It is a system of two non-linear diff erential 
equations of fi rst order, which for simple functions 
X and Y, remember equation (4), is relatively easy to 
solve. 

But if we introduce for X and Y the expressions 
of Equations (3), we get a very complex system of 
diff erential equations, for which it is fi rst necessary 
to solve for X and Y by the numerical integration. 
This combination of numerical integration and 
solving of diff erential equations is too complex 
for the computer algebra system MAPLE. It is 
not possible to use successfully direct numerical 
solution of equations using the MAPLE command 

1: Main variables and dimensions of the bus Irisbus Citelis 18 m
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dsolve together with the parameter numeric, see 
(MAPLE 2009).

Numerical integration of the equation of 
motion

It is possible to solve the system (3) together with 
equations (6) numerically using Runge-Kutta’s 
method, see (RALSTON 1978, REKTORYS 2000). 
We implemented this in MAPLE as procedure 
RK45, see (7).
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This procedure determines the position and 
velocity of the towed axle’s centre at time t + Δt. The 

next procedure, named STEP, see (8), defi nes the 
magnitude of time step Δt using a step size control.

2 6

( ) , 2;
1, , , ;

: []; 2 : [ ( ( , ), )];
2 2

1: [ ( , )];
( ( , 1 2)) 10
 : [ [], 1]; : ;

 :
2

U l R
R t t

t tl U R l

R l t
u u R R

R t t t
tt




 

 
 

 

  
     


 

STEP : proc local 
global 

RK45 RK45

RK45
if sqrt add

then
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For the fi rst iteration a random time step 
magnitude is chosen, e.g. Δt = 1s and the position 
for this time is calculated. Time t and coordinates x, 
y are saved in the vector R1. Similarly the position is 
calculated in the same procedure, but in two steps 
with a half time step size Δt/2 and saved as a vector  
R2. If the diff erence between these vectors is smaller 
than the required accuracy, |R1 − R2| ≤ 10−6, we add 
the resulting position, saved in the vector R1 to 
vector . Otherwise we reduce the size of time step 
by half and repeat the process. At the end of the 
iteration procedure the vector will contain vectors – 
ordered triplets containing the time and the towed 
axle’s position coordinates of the each iteration step.

2: Deriving the motive equation of the rear axle
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Practical application
Let’s take as example a passing of a rectangular 

turn when the bus is breaking. For this case we 
consider

0 2
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where 
V0...... the initial velocity,
a .......deceleration,
Tf ...... the period of turn passing and 
 ....... least radius of a passed turn. 

If we choose the direction in time t = 0 parallel to 
x axis, therefore 0 = 0, the turn will be fi nished at 
the moment, when the vector of immediate velocity 
[Ẋ, Ẏ] will be parallel to y. Therefore it is stated that 
Ẋ = 0. From this condition it is obvious, that because 
of Equation (3) we have
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Details can be found in (KRUMPHOLC, 2011A; 
KRUMPHOLC, 2011B).

RESULTS
As particular values we take V0 = 10 ms−1, a = 0.5 ms−2, 

 = 20 m, x0 = 0 m, y0 = 0 m, k = 1.950 m and L = 4.625 m, 
see Fig (1) and (IRISBUS Citelis, IRISBUS Citelis 
18 m). For these values the time necessary to pass the 
turn is Tf = 5.45681 s. The initial time is t0 = 0 s and 
for the initial time step we choose Δt = Tf. Now we 

create the list, its fi rst element will be [t, −L, 0], then 
 :=[[0, −4, 0]]. Procedure STEPdetermines the fi rst 
step size of the time step as Δt = Tf/128 = 0.04263 s 
and then executes 128 integration steps. For specifi c 
integration times it is possible to compute using 
Equations (3) the position of middle axle’s centre 
point. Due to Fig. 2 and the following relationship 
(11) it is hence possible to calculate the position of 
front, middle and rear – towed axle.

     , cos( ), sin( ) sin( ),cos( )Wheel D r        

 (11)

for D we can take k or k + d - the distance between joint 
and center point of middle or front axle, or L – the 
distance between joint and rear axle’s center point. 
For a we can take – the directional vector pointing 
from the joint to the middle axle’s midpoint. This 
is the directional vector of the velocity [Ẋ, Ẏ] or  – 
the directional vector pointing from the joint of the 
middle point of the rear axle, r – wheel spacing of 
single axles. Angular sizes  and  could be easily 
solved using the vector calculation. The result of 
the calculation could therefore be a graph on Fig. 3, 
depicting the trajectories of single wheels, or a graph 
on Fig. 4, which represents the trajectory of the cusps 
of the bus body.

The angle of cranking of the bus joint is shown 
on Fig. 5. The whole bus at fi ve positions in the 
curve is shown on Fig 6. As is shown on this fi gure, 
diff erence between trajectory of the cusp and of the 
wheel is greater as one meter.

3: Trajectory of separate wheels of the bus
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CONCLUSION AND DISCUSSION
Procedures presented in this article could be also 

used for the inverse problem. From the moment 
of the adhesion loss to breakaway it is possible to 
experimentally fi nd such a velocity and trajectory 
curvature functions that caused the skid. Therefore 
it is possible from the trajectory – a braking track – 
to estimate the driver’s actions that preceded this 
event. 

From the knowledge of acceleration inside the bus 
it is possible to perform the calculations of general 
force, aff ecting the whole bus as well as individual 
passengers. Knowledge of this general force is an 
important factor aff ecting the stability of the bus. 
The force aff ecting the single passenger is a limiting 
factor for their safety. The method mentioned above 
allows us to simulate the driver’s behavior and the 
impact on safety of passengers due to their position 
inside the bus.

4: Trajectory of the bus body

5: Angle of cranking the joint of the bus
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6: Bus positions in a curve

SUMMARY
We have developed a method which allows for any absolute value of the bus velocity function given 
by the v(t) and trajectory curvature function k(t) to compute all important kinematics variables of 
the articulated bus. This concerns not only the wheels but can be applied for any arbitrary point 
inside the bus. Just take for that the appropriate dimensions of the articulated bus corresponding 
to its technical descriptions. This approach can be used to study behavior of an arbitrary truck or so 
called “road train”. Furthermore, it is possible to determine the acceleration of any point, including 
the points which correspond to points of contact between the wheels and the road. This knowledge of 
acceleration could be used for the determination of the adhesion threshold limits. Knowledge of the 
acceleration of the arbitrary point of the articulated bus can be used for computations of the forces 
and their torque moments acting to the joint of the bus or truck. Torque moments are direct causes 
of the skid, so presented algorithms may be used for computer modeling of the behavior of the bus 
before and during skid. 
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