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Abstract
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In the area of economical classifi cation tasks, the accuracy maximization is o� en used to evaluate 
classifi er performance. Accuracy maximization (or error rate minimization) suff ers from the assump-
tion of equal false positive and false negative error costs. Furthermore, accuracy is not able to express 
true classifi er performance under skewed class distribution. Due to these limitations, the use of accu-
racy on real tasks is questionable. In a real binary classifi cation task, the diff erence between the costs 
of false positive and false negative error is usually critical. To overcome this issue, the Receiver Ope-
rating Characteristic (ROC) method in relation to decision-analytic principles can be used. One es-
sential advantage of this method is the possibility of classifi er performance visualization by means 
of a ROC graph. This paper presents concrete examples of binary classifi cation, where the inade-
quacy of accuracy as the evaluation metric is shown, and on the same examples the ROC method is 
applied. From the set of possible classifi cation models, the probabilistic classifi er with continuous 
output is under consideration. Mainly two questions are solved. Firstly, the selection of the best classi-
fi er from a set of possible classifi ers. For example, accuracy metric rates two classifi ers almost equiva-
lently (87.7 % and 89.3 %), whereas decision analysis (via costs minimization) or ROC analysis reveal 
diff ere nt performance according to target conditions of unequal error costs of false positives and false 
negatives. Secondly, the setting of an optimal decision threshold at classifi er’s output. For example, 
accuracy maximization fi nds the optimal threshold at classifi er’s output in value of 0.597, but the op-
timal threshold respecting higher costs of false negatives is discovered by costs minimization or ROC 
analysis in a value substantially lower (0.477).

binary classifi cation, bankruptcy prediction, classifi er performance evaluation, accuracy maximiza-
tion, receiver operating characteristic (ROC)

In the area of economical research, much atten-
tion has been paid to development and improve-
ment of many prediction methods and models so 
far. One of the typical tasks being solved is the bank-
ruptcy and fi nancial distress prediction and related 
binary classifi cation task. Surprisingly, not so many 
studies pay attention to a more sophisticated clas-
sifi er performance evaluation. Despite the fact the 
evaluation methodology critically aff ects the opti-
mal classifi er selection and its use, not so suffi  cient 
accuracy maximization (or error rate minimization) 
has been o� en used. Other non-fi nancial literature 
criticizes accuracy maximization procedure as well. 
Detailed fi ndings can be found in Pokorny (2009) 

within the present state analysis of this problem, 
where other authors are quoted.

In the area of medical research, the Receiver Ope-
rating Characteristic (ROC) method has been widely 
used, which has the potential to solve the lack of 
a sophisticated evaluation methodology, includ-
ing consideration of diff erent type I/II error costs. 
Moreover, it has the ability to visualize classifi er’s 
performance. Although the ROC is not completely 
unknown to the fi nancial research, its application is 
rare.

The objective of this paper is to emphasize short-
comings of accuracy as an evaluation metric on con-
crete examples of the binary cost-sensitive classi-
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fi cation task, and to show the use of ROC analysis 
as an alternative evaluation method. This paper is 
based on results of F. Provost’s and T. Fawcett’s re-
search and tries to popularize this topic. Results of 
this study can be used as a guide for the economical 
research mentioned above.

MATERIAL AND METHODS

Binary classifi cation
The binary classifi cation task is confi ned to two class 

separation. The classifi er’s outcome can be treated 
as positive (P) or negative (N), and according to the 
true status of an instance being classifi ed, the clas-
sifi cation result can be true positive (TP), true nega-
tive (TN), false positive (FP, Type I Error) or false 
negative (FN, Type II Error). In case of bankruptcy 
prediction, a company could be rated as healthy 
(negative) or failing (positive). Many classifi cation 
models applicable on this task exist, solid theoreti-
cal background can be found e.g. in Bishop (2006). 
This study focuses primarily on a so called proba-
bilistic classifi er with continuous output. The clas-
sifi er’s output is in the form of a probability or score 
– numeric value that represents the degree to which 
an instance is a member of a class. (Fawcett, 2004) 
The same author then follows: “These values can 
be strict probabilities, in which case they adhere 
to standard theorems of probability; or they can be 
general, uncalibrated scores, in which case the only 
property that holds is that a higher score indicates 
a higher probability.”.

Having a test set1 of negative and positive samples 
(with true status of class membership), and a set of 
potential classifi ers, the goal is to choose the best 
classifi er according to target conditions of applica-

tion. Each of the classifi ers is populated with the test 
set, and at its output produces the outcome usua-
lly in the form of a Gaussian distribution for either 
of the classes. Varying the decision threshold at 
the classifi er output to a suitable position, the fi nal 
form of the classifi er is obtained – a discrete classi-

fi er (Fawcett, 2004), and so the second goal is to set 
the optimal decision threshold. Samples rated above 
this threshold are classifi ed as positive, samples be-
low are classifi ed as negative. One example of a typi-
cal classifi er of this type is the neural network having 
sigmoidal activation function on its output neuron. 
The fi xed threshold of 0.5 would be an misleading 
approach because of relative score separation objec-
tive, as describes Fawcett’s example (2004, p. 8).

The accuracy as an evaluation metric
Accuracy (error rate) is given by the ratio of correctly 

(incorrectly) classifi ed instances to all instances in 
the test set, i.e. (TP + TN)/(P + N). This type of met-
ric is criticized by authors for its inability to diff er-
entiate between type I and II error costs (both are 
assumed to be equal), but they do diff er in most 
practical tasks. Furthermore, accuracy doesn’t re-
fl ect true classifi er’s performance under skewed 
class distribution. In reality, classifi ers o� en face 
to a grater number of negative instances compared 
to positive instances. (Obuchowski, 2003; Faw-
cett, 2004; Provost and Fawcett, 2001, 1997; Provost, 
Fawcett and Kohavi, 1998) Accuracy evaluates classi-
fi er’s performance with one number for both of the 
classes and for one setting of target conditions.

Another shortcoming of the accuracy metric is the 
indistinguishable performance evaluation of two 
diff erent scenarios, as depicted on Fig. 1 – example 
similar to Erkel and Pattynama (1998). The accuracy 
is the same for both of the situations, but for exam-
ple, classifying almost all positives in the fi rst one 
encompasses wrong classifi cation of almost all nega-
tives. On the other hand, classifying almost all posi-
tives within the second scenario encompasses ap-
proximately only half of false positives.

ROC analysis
ROC analysis is a method frequently used in 

medical research. Essential ROC metrics are the 
sensitivi ty and specifi city. Sensitivity (or true positive 
rate, TPR) is the proportion of correctly classifi ed 
positives (TP) among all positives (P), i.e. TPR = TP/P. 

1 Not only one single test set should be used, for the purpose of variance measurement, several test sets should be used. 
(Fawcett, 2004). The same author then presents the so called ROC curves averaging.

1: Example of two distributions of the classifier’s output class membership score
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Specifi city (or true negative rate, TNR) is the pro-
portion of correctly classifi ed negatives (TN) among 
all negatives (N), i.e. TNR = TN/N. The opposite of 
specifi city is the false positive rate (FPR = FP/N), 
where FP is the number of negatives incorrectly 
classifi ed as positive. Similarly, false nega tive rate 
FNR = FN/P, where FN is the number of positives in-
correctly classifi ed as negative.

Varying the decision threshold at classifi er’s con-
tinuous output, the number of TP, FN, TN and FP 
changes, so does the sensitivity and specifi city, but 
both in opposite direction. Higher sensitivity results 
in lower specifi city and vice versa. Diff erent thresh-
olds constitute set of points [FPR, TPR] resulting in 
a ROC Curve and so called ROC graph. ROC curve 
generation algorithm can be found for example in 
Fawcett (2004). The X-axis in a ROC graph repre-
sents false positive rate, the Y-axis represents sensi-
tivity. Discrete classifi er (i.e. with the output of P or 
N only) is represented by one point in the graph. The 
more north-west the point lies, the better solution 
has been found. Ideal point is [0, 1], which means 
zero false positive rate and 100% sensitivity. The dia-
gonal line represents the so called line of chance, in 
other words, no information is carried by the classi-
fi er, and real classifi er should always be above this 
line. Classifi ers laying under the line can easily be 
reversed to the upper le�  space by reverting their 
decisions. (Fawcett, 2004; Obuchowski, 2003; Pro-
vost and Fawcett, 2001, 1997; Provost, Fawcett and 
Kohavi, 1998; Erkel and Pattynama, 1998)

“ROC graphs illustrate the behavior of a clas-
sifi er without regard to class distribution or er-
ror costs, and so they decouple classifi cation 
performance from these factors”. (Provost and Faw-
cett, 2001, 1997) Similarly, Obuchowski (2003) men-
tions ROC key characteristics. By treating both of 
the errors (FP, FN) separately, this method makes it 
possible to prioritize one type of error over another. 
Moreover, the ability to visualize the classifi er’s per-
formance facilitates inherent analysis.

For the purpose of classifi er performance com-
parison, it is usually easier to compare a single num-
ber then two values of sensitivity and specifi city. 
The Area Under the ROC Curve (AUC) is an example 
of such metric and measures classifi er discrimina-
tive power across all possible thresholds (or target 
conditions). Thereby AUC eliminates the infl uence 
of the decision threshold value on sensitivity and 
speci fi city. (Erkel and Pattynama, 1998). Perfect clas-
sifi er has the AUC 1.0 (100 %), the area under the line 
of chance equals to 0.5 (50 %). For other interpreta-
tions of the AUC, see Obuchowski (2003, p. 5).

One major drawback associated with the classi-
fi er comparison based on the AUC is that usually 
only part of the curve is practically relevant. (Obu-
chowski, 2003; Erkel and Pattynama, 1998) For exa-
mple, if we assume target conditions of high FN 
costs and relatively high occurrence of positive in-
stances, the upper right part of the ROC graph is 
relevant. The target conditions can be visualized 
as a line in a ROC graph – according to Provost and 

Fawcett (2001, 1997), this line is called iso-perfor-
mance line with a slope s given by the formula below, 
and all classifi ers corresponding to points on the 
line have the same expected costs. Using the exa-
mple above, the iso-performance line would have 
a small slope and as a tangent to a ROC curve would 
be located in the upper right part.

 TP2 − TP1  p(n)C(FP) 
s =   
 FP2 − FP1  p(p)C(FN) 

where p(p) is the prior probability of a positive exam-
ple, p(n) = 1 − p(p) is the prior probability of a nega-
tive example, C(FP) and C(FN) are the costs of false 
positive and false negative errors.

Obuchowski (2003) states that “whenever the 
ROC curves of two tests cross (regardless of whether 
or not their areas are equal), it means that the test 
with superior accuracy (ie, higher sensitivity) de-
pends on the FPR range; a global measure of ac-
curacy, such as the ROC curve area, is not helpful 
here.” Only if one model dominates in the whole 
ROC space (all other curves are below the curve of 
this test), this model can be said as the best one. (Pro-
vost and Fawcett, 2001, 1997; Provost, Fawcett, Ko-
havi, 1998) Obuchowski (2003) then suggests seve-
ral alternatives for the situation of crossing ROC 
curves: use of the ROC curve to estimate sensitivity 
at a fi xed false positive rate (or false positive rate at 
a fi xed sensitivity), or use of the partial area under 
the ROC curve (the area between two false positive 
rates, or the area between two false negative rates). 
Similar recommendations can be found in Erkel and 
Pattynama (1998). Obuchowski (2003, p. 7, Fig. 4) or 
Erkel and Pattynama (1998, p. 92, Fig. 4) depict this 
situation, similarly Fig. 2 below shows two ROC 
curves corresponding to two classifi ers from Fig. 1 
of this paper. Obviously, the second classifi er would 
be more appropriate in case of high FN costs and 

2: Example of two iso-performance lines corresponding to two tar-
get conditions
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high prevalence of positives, its ROC curve lies more 
north-west in the relevant part of the ROC graph.

To sum up, the ROC curve represents classifi er’s 
behavior in every possible situation, the iso-perfor-
mance line represents specifi c target conditions, by 
combining them, the optimal decision threshold 
can be found.

By the way, Provost and Fawcett invented a com-
plex method called ROC Convex Hull, which em-
ploys principles of the ROC analysis, decision analy-
sis and computation geometry, and which is able to 
identify set of methods that are potentially optimal 
under any cost and class distribution. (See Provost 
and Fawcett, 2001, 1997; Fawcett, 2004 for details.)

Data
To demonstrate the use of ROC analysis for the 

cost-sensitive classifi er evaluation, six data sets were 
generated. Each data set represents classifi er’s out-
put score (as explained in the Material and Meth-
ods chapter) in a form of Gaussian distribution 
from interval 0-1 separately for negative and posi-
tive instances on a test set. Such output can be ob-
tained for example from a neural network having 
the  sigmoidal activation function at the output unit.

Test 1 data set (i.e. the output score of classifi er 1 
for a given test set of samples) contains 100 nega-
tive and 100 positive instances (mean ± std. devia-

tion negatives/positives: 0.2 ± 0.1/0.8 ± 0.1) and rep-
resents an ideal classifi er with no overlap between 
both of the classes. Test 2 data set consists of 200 in-
stances for each class (mean ± std. deviation nega-
tives/positives: 0.35 ± 0.1/0.65 ± 0.1), having slight 
overlap. More realistic are the test 3 (mean ± std. de-
viation negatives/positives: 0.4 ± 0.12/0.6 ± 0.12) 
and test 4 (mean ± std. deviation negatives/posi-
tives: 0.45 ± 0.12/0.55 ± 0.12) data sets, where nega-
tive samples (3200) outnumber positive samples 
(800). Test 4 has considerable overlap compared 
to test 3. Last two tests, test 5 (mean ± std. devia-
tion negatives/positives: 0.5 ± 0.15/0.75 ± 0.07) and 
test 6 (mean ± std. deviation negatives/positives: 
0.25 ± 0.07/0.5 ± 0.15) with balanced classes of 1000 
samples per class demonstrate the eff ect of reversed 
distribution of positive and negative samples on bi-
nary  classifi cation.

Statistical characteristics are shown in Tab. I–III, 
histograms (number of positive and negative sam-
ples from the test set being classifi ed with the classi-
fi er’s output score in one of 20 groups from interval 
0–1) are depicted in Fig. 3–5.

RESULTS AND DISCUSSION
Two questions have to be solved before applying 

a new classifi er. Firstly, all available classifi ers have 

I: Classifi er 1 and 2 statistical characteristics of the class output score

Classifi er 1 Classifi er 2

Negatives n = 100 Positives n = 100 Negatives n = 200 Positives n = 200

Mean 0.192 0.802 0.351 0.647

Std. deviation 0.096 0.092 0.107 0.1

Median 0.189 0.8 0.36 0.652 

Min 0.005 0.517 0.057 0.379

Max 0.431 0.970 0.656 0.978

II: Classifi er 3 and 4 statistical characteristics of the class output score

Classifi er 3 Classifi er 4 

Negatives n = 3 200 Positives n = 800 Negatives n = 3 200 Positives n = 800

Mean 0.399 0.594 0.449 0.55

Std. deviation 0.119 0.119 0.12 0.121

Median 0.401 0.594 0.448 0.55

Min 0.009 0.224 0.019 0.191

Max 0.773 0.943 0.874 0.895 

III: Classifi er 5 and 6 statistical characteristics of the class output score

Classifi er 5 Classifi er 6

Negatives n = 1 000 Positives n = 1 000 Negatives n = 1 000 Positives n = 1 000

Mean 0.508 0.752 0.253 0.509

Std. deviation 0.153 0.069 0.07 0.149

Median 0.511 0.752 0.253 0.508

Min 0.098 0.506 0.044 0.09

Max 0.959 0.995 0.487 0.936 
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to be compared according to their classifi cation per-
formance and the best one has to be chosen. Se-
condly, an optimal decision threshold (cut-off ) must 
be set. Both tasks depend on target conditions, i.e. 
target error costs of FP and FN and target distribu-
tion of negatives and positives. Choosing the right 
metric for classifi er performance evaluation is criti-
cal for both of the tasks.

Classifi er 1 shows a classifi er which is able to dis-
tinguish negatives from positives samples without 
any errors. In this situation, the setting of a  decision 

threshold is straightforward and lies in the lowest 
positive instance 0.51735, or due to the classifi er 
generalization, it could be more convenient to set 
the decision threshold to the middle of the interval 
between the highest negative and lowest positive in-
stance. Any value lying above this threshold is clas-
sifi ed as a positive instance, any value lying below 
this threshold is classifi ed as a negative instance. No 
errors (FP, FN) are produced with this threshold. In 
this case, the accuracy (error minimization) is able to 
express true classifi er performance and set the op-

3: Histogram of the output score of classifier 1 (neg./pos.: 100/100; mean ± std. dev. 0.2 ± 0.1/0.8 ± 0.1), and classifier 2 (neg./pos.: 
200/200; mean ± std. dev. 0.35 ± 0.1/0.65 ± 0.1)

4: Histogram of the output score of classifier 3 (neg./pos.: 3200/800; mean ± std. dev. 0.4 ± 0.12/0.6 ± 0.12), and classifier 4 neg./
pos.: 3200/800; mean ± std. dev. 0.45 ± 0.12/0.55 ± 0.12)

5: Histogram of the output score of classifier 5 (neg./pos.: 1000/1000; mean ± std. dev. 0.5 ± 0.15/0.75 ± 0.07), and classifier 6 (neg./
pos.: 1000/1000; mean ± std. dev. 0.25 ± 0.07/0.5 ± 0.15)
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timal threshold, even if the target misclassifi cation 
costs C(FP) and C(FN) were not the same.

Accuracy used for setting a decision threshold
Inappropriate use of accuracy for the purpose of 

setting an optimal decision threshold shows classi-
fi er 2. Accuracy maximization (or error rate minimi-
zation) sets the threshold in the intersection of the 
negative and positive class. In case of classifi er 2, 
maximal accuracy of 93.25 % (minimal error rate 
of 6.75 %) is reached by setting the threshold to the 
value of 0.51464 or 0.48917. If we assume a situa-
tion of target costs e.g. C(FP) = 1 and C(FN) = 5, to-
tal misclassifi cation costs would be 91 (for the fi rst 
threshold) or 79 (for the second threshold). On the 
contrary, the costs minimization method sets the 
threshold to a lower value 0.47019, which produces 
lower total costs of 57. This clearly shows, that accu-
racy maximization (error rate minimization) doesn’t 
set the optimal threshold in case of unequal error 
costs. The threshold set by this metric would be op-
timal in case of equal error costs.

Similar results can be shown on classifi ers 3 and 4. 
The threshold set by accuracy maximization is too 
high compared to the threshold set be costs minimi-
zation. Costs minimization refl ects higher costs of 
FN, thereby prefers correct classifi cation of positives 
(higher true positive rate, TPR) at the expense of in-
correct classifi cation of many negatives (higher false 
positive rate, FPR). Tab. IV describes this phenome-
non for classifi ers 1–4.

One question may arise – why are there two opti-
mal thresholds according to the accuracy maximiza-
tion? Let’s demonstrate this phenomenon on classi-
fi er 4 (similar eff ect can be found with classifi ers 2, 
3 and 6):

Instead of considering two optimal thresholds, it 
might be more correct to consider the average value 
of score lying between both of the minimums.

Accuracy used for classifi er performance 
comparison

Inappropriate use of accuracy for the purpose of 
classifi er performance comparison is demonstrated 
on two examplwes. Firstly, consider an example of 
two classifi ers A and B whose output score distri-
butions together with target conditions are shown 
on Fig. 6. Let’s assume that this case is characteristic 
with high disproportion between FP and FN costs, 
e.g. C(FP) = 1 and C(FN) = 150, and the distribution is 
balanced N/P = 100/100 for simplicity. According to 
accuracy maximization, classifi er A should be better 
than its counterpart because of its lower error rate. 
But then, if diff erent error costs are taken into con-
sideration, classifi er B is obviously better than clas-
sifi er A – see costs equal to FP in both situations. 
The reason why accuracy maximization doesn’t 
work well in this case is that accuracy tacitly assumes 
equal error costs, i.e. C(FP) = C(FN).

Similar behavior can be shown on classifi ers 5 and 
6. For the purpose of classifi er comparison and se-
lection, the accuracy is not usable here. According 
to the accuracy maximization, classifi er 5 has accu-
racy of 87.7 % (in threshold 0.63527), classifi er 6 has 
accuracy of 89.3 % (in threshold 0.37448 or 0.37381), 
and so both classifi ers are rated almost equivalently. 
But if diff erent error costs are taken into conside-
ration, the situation is completely diff erent.  Having 
C(FP) = 1 and C(FN) = 5, classifi er 5 has minimal 
costs of 339 (in threshold 0.6016), classifi er 6 has 
minimal costs 641 (in threshold 0.31339) and is 
much worse classifi er for this situation. Similarly, 
having C(FP) = 5 and C(FN) = 1, classifi er 5 has mini-

IV: Accuracy maximization vs. costs minimization, classifi ers 1–4

Classifi er

Accuracy maximization
(Error rate minimization) Costs minimization

Accuracy
(Error rate)

Related 
threshold (s)

Related
[FPR, TPR]

Related 
costs* Total costs* Related 

threshold
Related

[FPR, TPR]

Classifi er 1
1

(0)
0.51735 [0, 1] 0 0 0.51735 [0, 1]

Classifi er 2
0.9325

(0.0675)
0.51464; 
0.48917

[0.055, 0.920];
[0.070, 0.935]

91;
79

57 0.47019 [0.110, 0.965]

Classifi er 3
0.8565 

(0.1435)
0.59754; 
0.59679

[0.052, 0.489];
[0.053, 0.493]

2210;
2198

1412 0.47702 [0.251, 0.848]

Classifi er 4
0.80975

(0.19025)
0.67699; 
0.67682

[0.026, 0.153];
[0.026, 0.154]

3473;
3469

2329 0.47976 [0.390, 0.730]

* C(FP) = 1, C(FN) = 5

Score # N/P Score FP FN Errors
203 P 0.67791 83 680 763
204 P 0.67734 83 679 762
205 P 0.67699 83 678 761  min 1 (761/4000 = 0.19025)
206 N 0.67698 84 678 762
207 P 0.67682 84 677 761  min 2 (the same error rate)
208 N 0.67593 85 677 762
209 N 0.67570 86 677 763
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6: Inadequate use of accuracy for classifier performance comparison

V: Accuracy maximization vs. costs minimization, classifi ers 5–6

Accuracy maximization (Error rate minimization)

Classifi er
Accuracy

(Error rate)
Related threshold (s) Related [FPR, TPR]

Classifi er 5
0.8765

(0.1235)
0.63527 [0.212, 0.965]

Classifi er 6
0.8925

(0.1075)
0.37448;
0.37381

[0.043, 0.828];
[0.044, 0.829]

Costs minimization – C(FP) = 1, C(FN) = 5

Classifi er Total costs Related threshold Related [FPR, TPR]

Classifi er 5 339 0.60160 [0.274, 0.987]

Classifi er 6 641 0.31339 [0.201, 0.912]

Costs minimization – C (FP) = 5, C(FN) = 1

Classifi er Total costs Related threshold Related [FPR, TPR]

Classifi er 5 720 0.72030 [0.081, 0.685]

Classifi er 6 305 0.40996 [0.011, 0.750]

7: ROC graphs for classifiers 1–4 
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mal costs of 720 (in threshold 0.7203), classifi er 6 has 
minimal costs of 305 (in threshold 0.40996) and is 
much better classifi er for this situation. Tab. V con-
tains further details (FPR, TPR).

ROC analysis in general
In addition to the methods discussed so far (accu-

racy maximization, costs minimization), the ROC 
analysis delivers visualization of classifi er perfor-
mance through a so called ROC graph. The ROC 
graph consists of a ROC curve that shows classifi er 
performance in a form of [FPR, TPR] pairs across all 
possible decision thresholds.

On Fig. 7a, there are ROC curves of classifi er 1 and 
classifi er2. Classifi er 1 curve is composed by three 
points [0, 0] – [0, 1] – [1, 1], and represents an ideal 
classifi er with the area under the ROC curve (AUC) 
equal to 1 (100 %). Classifi er 2 has lower curve with 
AUC 0.97837 (97.8 %). ROC graph for classifi er 3 
and 4 is shown on Fig. 7b. Classifi er 3 curve is above 
classifi er 4 curve in the whole ROC space, so we can 
conclude, that classifi er 3 would be a better choice 
than classifi er 4 in all possible decision thresholds 
and target conditions. Superiority of classifi er 3 over 
classifi er 4 can be expressed also with the AUC, clas-
sifi er 3 has AUC of 87.5 %, classifi er 4 AUC is 72.4 %.

ROC analysis and setting an optimal decision 
threshold

ROC analysis itself is not able to set an optimal 
decision threshold. But if it is combined with the 
iso-performance line, same results can be achieved 
as with the costs minimization, but with the luxury 
of visualization. The procedure is demonstrated on 
classifi er 3 (Fig. 7b).

ROC curve of classifi er 3 shows its behavior 
across all possible thresholds. Iso-performance 
line a, or its slope respectively, is given by target 
conditions, i.e. probability of a negative instance 
p(N) = 4/5 (3200/4000), probability of a positive in-
stance p(P) = 1/5 (800/4000), and costs C(FP) = 1, 
C(FN) = 5. According to the formula in the theoret-
ical section, the resulting slope equals to 4/5. The 
tangent of the iso-performance line a to the ROC 
curve of classifi er 3 gives us the optimal decision 
threshold (emphasized with a circle). This point cor-
responds to the costs minimization result, i.e. the 
threshold 0.47702 with [FPR, TPR] = [0.251, 0.848] 
(see Tab. IV).

Besides the target situation of unequal error costs, 
also the situation of equal misclassifi cation costs 
C(FP) = C(FN) is shown through the line b. Line 
slope is 4/1, the resulting point is at [FPR, TPR] cor-
responding to the threshold set by error minimiza-
tion (see Tab. IV).

Again, costs minimization itself seems to be suf-
fi cient method for this problem, but what if the tar-
get conditions (e.g. misclassifi cation costs) are not 
known, or are known only approximately? In this 
case, described visualization of the ROC curve and 
iso-performance line could be highly valuable.

ROC analysis and classifi er performance 
comparison

In a ROC graph, the classifi er performance can be 
compared visually, which is the fi rst and quickest 
way. The more north-west the ROC curve is, the bet-
ter (see Fig. 7 and 8). 

The performance can be compared numerically 
according to the AUC. Higher AUC value means bet-

8: ROC graph for classifiers 5–6 
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ter performance. Tab. VI shows AUC of all classifi ers 
discussed so far.

However, one considerable drawback about AUC 
must be emphasized – this metric is usually irrele-
vant when ROC curves cross. This is the case of clas-
sifi er 5 and classifi er 6 (see Fig. 8). The AUC rates 
both of the classifi ers almost equivalently (92.7 % 
and 93.8 % for classifi er 5 and classifi er 6 respec-
tively) because this type of metric measures the 
discriminative power across all possible thre sho-
lds, i.e. without regard to target conditions. But as 
was already shown, both classifi ers are completely 
 diff erent, either successful in diff erent target condi-
tions (classifi er 5 in a situation of higher C(FN), clas-
sifi er 6 in a situation of higher C(FP)).

In this case, several other metrics are suggested. 
One of them could be the comparison according 
to the FPR (or specifi city) at a fi xed sensitivity level. 
This metric is useful in a situation of higher C(FN). 
Tab. VI compares all classifi ers of this study not 
only with the AUC metric, but also with the FPR 
(specifi city) at fi xed sensitivity of 95 % (other valu es 
of sensitivity can be used as well, e.g. 92 %, 90 %). 
Here is obvious, that classifi er 5 outperforms clas-
sifi er 6 – specifi city at fi xed 95% sensitivity of classi-
fi er 5 (79.5 %) is higher than specifi city of classifi er 6 
(50.9 %).

The same eff ect can be shown in a ROC graph. On 
Fig. 8, only the right-upper part of the ROC graph is 
practically relevant, and here the ROC curve of clas-
sifi er 5 lies above the curve of classifi er 6. Similarly, 
the case of higher C(FP) shi� s the area of interest to 
the le� -lower part of the ROC graph, where classi-
fi er 6 outperforms classifi er 5.

Optimal decision threshold is set by the iso-per-
formance line c touching the ROC curve of classi-
fi er 5, or line d touching the ROC curve of classifi er 6 
for either of the target conditions. Line c represents 
target conditions p(P) = p(N) = 1/2, C(FP) = 1, C(FN) = 5, 
so the line slope equals to 1/5, and resulting point 
on the ROC curve corresponds to the threshold 
0.60160 with [FPR, TPR] = [0.274, 0.987] calculated 
by costs minimization. Line d represents target con-
ditions p(P) = p(N) = 1/2, C(FP) = 5, C(FN) = 1, so the 
line slope equals to 5/1, and resulting point on the 
ROC curve corresponds to the threshold 0.40966 
with [FPR, TPR] = [0.011, 0.750] calculated by costs 
minimization.

So� ware, platform and algorithms used
Receiver Operating Characteristic:

Own implementation based on Fawcett (2004, 
p. 13 – algorithm 2, p. 16 – algorithm 3), imple-
mented in Borland Delphi 7 Professional.

Accuracy maximization/Error rate minimization, Costs 
minimization:

Own implementation based on ROC points – fi nd 
minimum of errors (costs) produced by every pos-
sible classifi er’s threshold (classifi er’s output score), 
equally scored instances are treated as one instance 
(threshold considering errors/costs for all equally 
scored instances). Modifi ed so� ware application for 
ROC above.

Platform:
MS Windows XP Professional, Linux Mandriva 

2009.1

VI: Classifi er performance numerical comparison

Classifi er AUC FPR (Specifi city) at 95% sensitivity Related threshold

Classifi er 1 1.00000 0.00000 (1.00000) 0.66993

Classifi er 2 0.97837 0.09500 (0.90500) 0.47712

Classifi er 3 0.87484 0.50187 (0.49813) 0.40018

Classifi er 4 0.72393 0.81125 (0.18875) 0.34555

Classifi er 5 0.92656 0.20500 (0.79500) 0.64164

Classifi er 6 0.93779 0.49100 (0.50900) 0.25521

SUMMARY
In the area of economical classifi cation tasks, the accuracy maximization is o� en used to evaluate 
classifi er performance. Accuracy maximization (or error rate minimization) suff ers from the assump-
tion of equal false positive and false negative error costs. Furthermore, accuracy is not able to express 
true classifi er performance under skewed class distribution. Due to these limitations, the use of accu-
racy on real tasks is questionable. In a real binary classifi cation task, the diff erence between the costs 
of false positive and false negative error is usually critical. To overcome this issue, the Receiver Ope-
rating Characteristic (ROC) method in relation to decision-analytic principles can be used. One es-
sential advantage of this method is the possibility of classifi er performance visualization by means of 
a ROC graph. This paper presents concrete examples of binary classifi cation, where the inadequacy 
of accuracy as the evaluation metric is shown, and on the same examples the ROC method is applied. 
From the set of possible classifi cation models, the probabilistic classifi er with continuous output is 
under consideration. Mainly two questions are solved. Firstly, the selection of the best classifi er from 
a set of possible classifi ers. For example, accuracy metric rates two classifi ers almost equivalently 
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(87.7 % and 89.3 %), whereas decision analysis (via costs minimization) or ROC analysis reveal diff er-
ent performance according to target conditions of unequal error costs of false positives and false nega-
tives. Secondly, the setting of an optimal decision threshold at classifi er’s output. For example, accu-
racy maximization fi nds the optimal threshold at classifi er’s output in value of 0.597, but the optimal 
threshold respecting higher costs of false negatives is discovered by costs minimization or ROC analy-
sis in a value substantially lower (0.477).

SOUHRN
Evaluace binárních klasifi kačních úloh v ekonomické predikci

V oblasti ekonomických klasifi kačních úloh je maximalizace přesnosti často používanou metrikou 
pro hodnocení klasifi kačního výkonu. Maximalizace přesnosti (resp. minimalizace chybovosti) trpí 
předpokladem rovných nákladů chyb typu falešná pozitivita a falešná negativita. Kromě toho není 
přesnost schopna vyjádřit pravý výkon klasifi kátoru v situaci nerovnoměrného rozložení tříd. Vzhle-
dem k těmto omezením je použití přesnosti v reálných úlohách diskutabilní. V reálné binární klasifi -
kační úloze je rozdíl mezi náklady falešné pozitivity a falešné negativity obvykle kritický. K překonání 
tohoto problému je použita metoda ROC ve spojení s principy rozhodovací analýzy. Jednou z pod-
statných výhod této metody je možnost vizualizace klasifi kačního výkonu prostřednictvím ROC 
grafu. Tato studie prezentuje konkrétní příklady binární klasifi kace, kde je ukázána neadekvátnost 
přesnosti jako evaluační metriky, a na stejných příkladech je dále aplikována metoda ROC. Z mno-
žiny dostupných klasifi kačních modelů je uvažován pravděpodobnostní klasifi kátor se spojitým vý-
stupem. Zejména jsou řešeny dvě otázky. Za prvé výběr nejlepšího klasifi kátoru z množiny dostup-
ných klasifi kátorů. Například metrika přesnosti hodnotí dva klasifi kátory téměř ekvivalentně (87,7 % 
a 89,3 %), zatímco rozhodovací analýza (prostřednictvím minimalizace nákladů) nebo ROC analýza 
odhalují rozdílný výkon podle cílových podmínek nerovných nákladů falešných pozitivit a falešných 
negativit. Za druhé nastavení optimální rozhodovací hraniční hodnoty na výstupu klasifi kátoru. Na-
příklad maximalizace přesnosti nachází optimální hraniční hodnotu na výstupu klasifi kátoru v hod-
notě 0,597, avšak optimální hraniční hodnota respektující vyšší náklady falešných negativit je nale-
zena nákladovou minimalizací nebo ROC analýzou v hodnotě podstatně nižší (0,477).

binární klasifi kace, predikce bankrotu, hodnocení výkonu klasifi kátoru, maximalizace přesnosti, 
metoda ROC
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