ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS

SBORNIK MENDELOVY ZEMEDELSKE A LESNICKE UNIVERZITY V BRNE

Volume LVII

12

TOWARDS AN MDA-BASED APPROACH
FOR DEVELOPMENT OF A STRUCTURAL
SCOPE OF THE PRESENTATION LAYER

J. Krystof

Received: June 26, 2009

Abstract

KRYSTOF, J.: Towards an MDA-based approach for development of a structural scope of the presentation layer:
Acta univ. agric. et silvic. Mendel. Brun., 2009, LVII, No. 6, pp. 123-132

This paper presents an approach for developing the presentation layer of software applications.
The approach is based on the concept of the Model Driven Architecture (MDA) and uses a UML
- based model of graphical user interfaces, which is created according to rules defined in a meta -
model. The meta - model is not oriented to a particular platform, thus all designed models can be
created independently of the programming language and widget library. This platform independent
UML based model can be transformed into source — code for an arbitrary programming language and
can be used in a software development process.

The meta - model of our approach is an extension of the common UML and provides support for
modeling the presentation layer. The meta — model thus fills a gap that exists in modeling three - laye-
red software applications, beside the application and the data layer. By providing this possibility for
modeling the presentation layer, we can crucially impact current approaches to the development of
three layered software applications. All model artifacts contain essential information about the gra-
phical user interface and can be used for a code generation. Since the UML is widely used by analysts,
they can produce models which de-facto represent source code and thus they reduce the workload
for programmers, who create source code by some traditional approaches. Our model - based ap-
proach also strictly separates the appearance and the structure of graphical user — interfaces and both
of them are developed separately, which brings higher modularity of software.

In this paper, we demonstrate our development approach by focusing on the structure of graphi-
cal user interfaces. Our approach is influenced by the concept of Model Driven Architecture and we
deal with all related issues, such as meta — model, user models, model transformations and source —
code generation. For evaluating our approach, we designed and developed a software framework, we
integrated it into a generic modeling tool, and used approach principles during the development of
amodule of an information system.

MDA, UML, modeling, presentation layer, structure, source code generation

Number 6, 2009

The presentation layer is not a simple homoge-
neous structure and it's complexity reaches out of
frame of this paper. In spite of the complexity of
the presentation layer, we can define it as (MYERS,
ROSSON; 1992) a software component, that trans-
lates a user action into one or more requests for ap-
plication functionality, and that provides to the user
feedback about the consequences of his or her ac-
tion. The definition refers to all visible components
of a software application such as a window, a but-

ton or a text section and also refers to an application
logic, which accesses controlling units. The applica-
tion logic can determine all users’ actions with their
parameters.

When developing the presentation layer, we can
follow two traditional approaches (RYDER, SOFFA,
BURNETT; 2005): The source code for the visi-
ble component can be obtained by hard - coding,
or a specialized tool can be used enabling us to get
the source code by visual programming. We can

123

124

J. Krystof

identify several drawbacks in both of these, thus we
usually use their combination. There still remains
one drawback when we use the combination, which
is coming from programming itself rather than any
technique: the source code is mostly intended for
a particular widget library and cannot be used for
any other. We characterise this drawback as plat-
form dependency, which can be eliminated by mo-
deling (ZIADI, TRAVERSON, JEZEQUEL; 2002).

The presentation layer is located above the appli-
cation and the data layer in the software architecture
(BACHMANN, BASS, CARRIERE, CLEMENTS,
GARLAN, IVERS, NORD, LITTLE; 2005). During
the development of the software, the modeling can
be intensively employed, so we can use the UML for
modeling the application layer or the ERD' for mo-
deling the data layer. As we have already mentioned,
modeling allows the expression of important infor-
mation independently of a target platform. Modeling
thus can save a lot of work when a current platform
needs to be replaced with a different one in order
to increase performance or decrease running costs.
However, we do not find this kind of support in cur-
rent modeling tools and thus development is mostly
based only on traditional approaches. We perceive
this state as a crucial gap and we want to provide a so-
lution for it by designing a model — based approach
for the development of the presentation layer.

It is obvious, that creating models is a time con-
suming activity and our goal is to use them as ef-
fectively as possible, and not only as a blueprint or
a sketch as with current approaches. If we take into
account models from the application or the data
layer, we can find in modeling tools supportin appli-
cations for generating class skeletons with attributes
and get/set methods or generation of DDL? scripts
for a set of target platforms. This automated genera-
tion can save time significantly during the develop-
ment phase, if we consider that in a software system
can be thousands of classes or database tables. With
respect to these features of automated code genera-
tion, we want to have similar support when mode-
ling components of graphical user interfaces (GUD).

MATERIALAND METHODS

Our research is divided into two parts. The first
part focuses on a definition of the modeling concept
which includes a modeling language and rules for
modeling the presentation layer. In order to model
this domain, we can use an existing modeling lan-
guage or create a new one. The second part focuses
on processing model data and transformations re-
sulting in the final model, which will be specific for
a particular platform. Furthermore, the second part

AW N =

deals with the issue of source code generation from
models.

Choosing the modeling language

In order to provide the modeling concept, we
need to choose a modeling language. Firstly we
need to define requirements for the modeling lan-
guage and use an existing language or create a new
one. With regard to our goals we define following re-
quirements for a modeling language:

e Independence the target platform.

The modeling language must allow us to express

all necessary information without knowledge of

any existing platform. We are able to gather dat,
which will be valid even after a change of plat-
form.

e Formalness.

In order to transform data from our models, we

want the language be formal - thus enabling us to

process data automatically.
e Easy adaptation.

We prefer to provide a language which is easy to

adopt. We do not want to force analysts or develo-

pers to spend time studying a new language, and
we prefer to use an existing language with a long
tradition, standardized and simple. Users of such

a language can directly focus on the real issue and

do not have to bear all the difficulties coming from

adopting a new language.
e Expressive power.

The modeling language must be powerful enough

to describe the target domain. The language

should also be flexible and extensible, to reflect
possible changes in the target platform.

There have been several modeling languages de-
signed in order to model graphical user interfaces.
They provide independence from the target platform
and can be processed automatically, so we can choose
from these. We can mention UIML (ABRAMS, PHA-
NOURIOU, BATONGBACAL, WILLIAMS, SHUS-
TER; 1999), which is based on XML* and allows us
to model user interfaces for windows applications
and web browser applications as well. Another si-
milar language is MIMIC (PUERTA; 1996). However,
they do not fulfill defined requirements, since they
are not widely used and not common. Furthermore,
they save model data in a proprietary format so
the data can be read and processed only via specia-
lized tools. These facts impact negatively on the us-
ability of the modeling language and the speed of
adaptation.

After careful analysis we choose UML, which ful-
fills all defined requirements and we can declare fol-
lowing:

Entity-relationship model - http://en.wikipedia.org/wiki/Entity-relationship_model

Data Definition Language - http://en.wikipedia.org/wiki/Data_Definition_Language
Graphical User Interface - http://en.wikipedia.org/wiki/Graphical _user_interface
Extensible Markup Language — http://cs.wikipedia.org/wiki/Extensible_Markup_Language

Towards an MDA-based approach for development of a structural scope of the presentation layer

125

e UML provides capabilities to model indepen-
dently on any target platform so the UML - based
models are durable (PILONE, PITMAN; 2005).

e UML is defined formally in its own meta - model
with use of the MOF language (Object Manage-
ment Group, 2005), which implies that UML data
can be processed automatically. There also exists
astandardization for UML data exchange via XMI°
format (Object Management Group, 2001): UML
models can be exchanged among different model-
ing tools, which support XMI export/import.

e UML has become an industrial standard as an ob-
ject oriented modeling language (ENGELS,
HECKEL, SAUER; 2000). It has an advantage for
developers who have already used this language
and do not need to spend a time on learning it.
Furthermore, the UML language provides graph-
ical notation which supports novices in adopting
it.

e Since version 2.0, UML is enriched by an exten-
sion mechanism of UML profiles. This allows us to
define restrictions and extensions to this all — pur-
pose language (ABOUZAHRA, BZIVIN, FABRO;
JOUAULT, 2005) and tailor the UML to describe
a domain of our interest.

e The UML language is also recommend by diffe-
rent methodologies such as the RUP® and RAD?
and its intensive use brings a potential for binding
models of all three software layers together, creat-
ing alarge data base of UML data.

Tailoring the UML for domain oriented
modeling

As we have already mentioned in the previous
section, the UML provides an extension mecha-
nism in the form of so - called “profiles” for mo-
deling specific domains. UML profiles are used to
model those aspects of systems or applications that
are not directly describable by native UML elements
(ABOUZAHRA, BZIVIN, FABRO, JOUAULT; 2005).
Aprofileisa consistent set of stereotypes, constraints
and tagged values. A stereotype represents a class of
elements, so we can differentiate between diverse
elements of a system. A stereotype can be marked by
a geometric icon and can be easily recognized from
other stereotypes. While creating our profile, we de-
signed a set of icons and shapes (see fig. 3) in order to
help improve orientation when working with large
models. Constraints can be attached to a stereotype
either in an informal form or in the form of OCL
expressions (Object Management Group, 2003).
A stereotype is created as an instance of the meta -
element of the UML and can have meta - attributes.

XML Metadata Interchange

[©<JEN e NRV; |

Object Management Group - http://www.omg.org/

These meta — attributes are called tagged values and
can be used for recording specific properties.

UML profiles have been successfully applied to
modeling web systems (KOCH, BAUMEISTER,
HENNICKER, MANDEL; 2000), (KARWACZYN-
SKI, MACIEJEWSKT; 2004) and business processes
(JOHNSTON, 2004). With respect to results of these
applications, we believe that the mechanism of pro-
files enables us also to model the scopes of the pre-
sentation layer.

UML data processing

Tn order to generate source code from UML mo-
dels we need to be able to process UML data. We as-
sume that there is an application programming in-
terface available in the current modeling tool, in
a manner as we present in the paper (KRYSTOF, J.,
CHALUPOVA, N.; 2008). In this case we are able
to process data interactively while working with
the tool. Another way is to process data which have
already been exported to the XMI format. XMI is
a language for meta - data interchange and can be
applied to all data, which are describable in the lan-
guage MOF (Object Management Group, 2005). As
we have already mentioned, the UML is defined by
the MOF, thus we can use the XMI in order to ma-
nipulate it.

The UML enables us to create, maintain and de-
velop (SOLEY, 2000) models and the OMG? defines
a methodical guideline - the MDA (Model Driven
Architecture) for processing UML data in software
engineering. We deal with issues of the MDA in
the paper (KRYSTOF, 2009a) in detail, so we men-
tion its principles here only briefly.

The MDA assumes the existence of a Platform In-
dependent Model (PIM) created according to some
rules in a UML profile. In this case, the UML pro-
file represents a meta — model. By applying the pro-
file on a domain of our interest, we obtain the PIM,
which cannot contain any information referring any
platform. The PIM stands as an input for model -
model transformation, which results in the Platform
Specific Model (PSM) that contains information re-
lated to a particular platform. The PSM stands as
an input for model - text transformation, which re-
sults in source code for a chosen platform.

Source code generation

Source code generation is our goal and the last
step in our approach to developing the presenta-
tion layer. By following the MDA, it is necessary to
design a transformation of the PSM into a source
code. As we have already mentioned, it is possible
to manipulate UML data via the format XMT, thus

Rational Unified Process - http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
Rapid Application Development - http://en.wikipedia.org/wiki/Rapid_application_development

126

J. Krystof

we can perform the XSLT® transformation. How-
ever, the complex format of XMI documents and
non trivial transformation make writing XSLT pro-
grams for code generation difficult and error — prone
(SCHAUERHUBER, WIMMER, KAPSAMMER,;
2006). We can also use a template - based tech-
nique for text generation, as a paper (BOAS, 2004)
suggests. Template — based generation is actually
nothing new, since it has been used by generations
of web pages. We can mention several frameworks
which allow the template - based code generation,
such as JSP, PHP, Velocity, JET, StringTemplate, etc.
Finally, we can create our own specialized program
oralibrary, which will generate text from underlying
data. Regarding the wide offer of software libraries
for template — based technique and simple usage, we
decided to use this approach. The process of trans-
formation is illustrated in figure 1.

Implementation of the approach

We have defined and argued for methods which
we use for our model - based development ap-
proach of the presentation layer. We can summarize
the process of implementation in following steps:

1. Design a meta — model for the presentation
layer.

2. Integrate the meta — model in a modeling tool
supporting UML.

3. Design transformations PIM - PSM, PSM -
source code and create corresponding templates
for a particular platform.

Evaluate the approach by creating models of
a software application, generate source — codes
and comment results.

RESUILTS

We demonstrate results of the development of
a window for a module of an information system
(see fig. 6). Since our meta — model is large, we deal
only with the structure of user interface and we
do not focus on other aspects such as presentation
logic, navigation, etc. Detailed information regard-
ing the whole meta - model can be found in our pa-
per (KRYSTOF, MOTYCKA; 2008).

The meta - model of the presentation layer —
the structural scope

The meta — model is designed with the use of
the UML profile mechanism and has four scope
domains: structure, functionality, information and
presentation. There exists a corresponding set of
stereotypes in our profile for each domain and we
defined rules represented by meta - association be-
tween them (see fig.4).

The structural domain of the meta - model pro-
vides stereotypes corresponding to objects and re-

UML

PSM

Class Model

MPSM
-0

> ﬁ —>

1: An overview of model transformation

class Structbom

«metaclass

Clasy el & PresentationUnit é»
+ isActive: Boolear| «extends» + isAbstract: isStereotypeAbstract = true]
/ 0.0
«enumeratio... ; ‘ ControllUnit ‘
fe Container € ‘ 0‘
+ boxing: EBoxing
Horizontal
Vertical
Input
Group &3 ©
< [simpleimput)]
‘ Panel @,‘ ‘ Window g;‘ []
[] [J ‘ TextArea ‘ ‘ Select &3
: e
i []
: (o 0 |) —
Tab §d ‘ orm 0‘ ‘ 9 0‘
—] ©

2: The Meta - model of the structural scope

9 XSL Transformations - http://www.w3.org/TR/xslt

Towards an MDA-based approach for development of a structural scope of the presentation layer

127

lations, which assemble visible part of the GUIL. We
use three main abstract stereotypes for modeling vis-
ible objects of the GUT: containers, control units and
presentation units, which are ancestors of the ab-
stract stereotype “GuiElement” (see fig. 2). Realiza-
tions of these abstract stereotypes are for instance
“Panel”, “Button” or “Text”. By finding a proper set
of these stereotypes we can model a whole window
or its parts. Examples of stereotypes corresponding
to relations are “ParentOf” or “Precedes” (see fig. 4).
Both relations are connected with the implementa-
tion of layout of the GUIL The layout can be imple-
mented in two basic ways (BISHOP, HORSPOOL;
2004): firstly by absolute positioning, when a posi-
tion of each object is defined explicitly by coordi-
nates, and secondly by relative positioning, when
the final position of an object is determined by
the logic of its parent container. We implemented
relative positioning in our approach, which implies
that every object is present in a container. The re-
lation “ParentOf” can exist between a stereotype
of the “Container” type, and any other stereotype
which is a subtype of the “GuiElement”. The rela-
tion “Precedes” has two realizations: “H_Precedes”
and “V_Precedes”, which can exist between any sub-
types of the “GuiElement” and defines if objects are
placed horizontally or vertically. It is worth men-
tioning that relations “ParentOf” and “Precedes” are
not reflexive and are similar to the “Dependency”

Meta - model integration into a modeling tool

The meta — model in the form of the UML pro-
file can be integrated into any modeling tool which
supports the UML profile mechanism. Regarding
our needs, we also require a modeling tool to sup-
port import/export to the XMI format or to provide
an appropriate API enabling us to access UML data.
Nowadays, there exist several modeling tools or
frameworks providing these features and we can re-
fer for instance to Sparx Enterprise Architect, Visual
Paradigm or EMF.

We decided to use the Enterprise Architect (EA)
modeling tool and we implemented a set of methods
communicating with its API in the .Net platform.
We use these methods for validating models and for
UML data manipulation, particularly for the process
of model transformation. We also integrated our
own user interface into the EA, thanks to support
from the COM™ interface. Our user interface serves
for launching transformations and code generating
interactively, which makes modeling and developing
easier and faster. The EA also provides a language
called ShapeScript (see fig. 3) enabling us to define
shapes and icons for stereotypes. Therefore we de-
signed a set of icons and shapes to create unique ap-
pearance of stereotypes in order to make creating
and maintaining models more user - friendly.

shape main{
defSize (110,
rectangle (0, O,

60);

100, 100);

addsubshape (“xicon”, 24, 32);
addsubshape (“xname”, 100, 34); [e=<Fomm:2 [F]
shape xicon fom2
editablefield = “stereotype”; =
print (“<<fstereotype#>>"); ~
image (“form.wmf”, 325, 10, 405, 90); a«ParentOfs
-
shape xname <<Simp|e|npub}|ﬁ| <L abal=>= lad
in_inpt2 in_Ibl2
h _align = “center”; S .
editablefield = “name”; «H Pracedess
moveto (0, 0); B
lineto (100, 0);
println (“#name#”);
3: A definition of stereotype appearance in ShapeScript language
relation of the UML. This means that every member Transformation

of such arelation is either client or supplier. In other
words, we can say that the relationship is oriented.
We will focus on these relationships in more detail
later when we talk about the issue of model transfor-
mation.

Tn order to generate source code, we need to per-
form a series of transformations of UML models, so
that we get optimal conditions for straightforward
and not too complex code generation. Transforma-
tions include a model - model transformation in
the PIM and the PSM and also model - text trans-

10 Component Object Model - http://www.microsoft.com/com

128

J. Krystof

[ass 550 -

wrmetaciasss ParentOf @3 ssnurce Container @3

Association B
= [T
+ igActive: Boolean aextendss +Containar

waxtendss starget

Precedes GuiElement
@? +client @?
+ ptype: String
[+GuiElemant

V_Precedes @3 H_Precedes @3

4: The meta — model of “ParentOf” and “Precedes” relations

formation from the PSM to source code. The issue of
transformation will be illustrated by transformation
of “Precede” relationships.

The meta — model allows any element of the GUI
to take part in both “H_Precedes” and “V_Precedes”
relationships by being in the source role. This state is
usually not allowed in a real implementation, since
every object must lie in a container. The top - level
container is a window or a web page. Containers
arc usually onedimensional either with a horizon-
tal or a vertical layout: a new member of such a con-
tainer is laid out next to the last member or below
the last member, respectively. Thus no object can be
present below/above and next to any other simul-
tancously in the same container. We have designed
an algorithm (KRYSTOF, 2009b) for removing this
unweldom phenomena in models. After the trans-
formation, we get a new model which is enriched by
additional “anonymous” containers of type “Wrap-
per”. The model is still platform independent be-
cause we did not add any information related to
the target platform during the transformation, and
we denote the new PIM as the PIM,. Of course, there
can be a need to perform more transformations and
the last transformation creates the PIM . An illustra-
tion of transformation of the “Precedes” relationship
is shown in figure 5. The transformation was applied
on the stereotype “accl_image” (see figure 6).

The PIM,, is taken as an input for the next trans-
formation, which enriches the current model with
information referring to the target platform, so we
get the PSM. Our transformation adds tagged values
called “ptype”, which represents the data type of

cach stereotype. For this purpose, we created a map-
ping table, which maps stereotypes to data types in
a particular platform. The result of the transforma-
tion is a class model, where every class corresponds
to a top — level container. Every such class contains
a list of attributes, which correspond to all nested
objects of the top - level window. Furthermore, class
also contains a method “init”, which is responsible
for initialization of all attributes and placing them
into the right containers. This class is subsequently
transformed into a source code file and can be com-
piled by an appropriate compiler.

The last transformation translates the PSM into
source code files. The transformation is based on
a set of templates, which are designed for a particu-
lar target platform. Templates are filled by model
data and flushed into a file.

Application of the concept

We have already experimented with our concept
by developing a module of a software system. We
chose the Java Swing platform as the target widget
library and modeled its screens with the use of
the profile. After the process of transformation we
had a set of files containing source code oriented to
building the structure of the GUL Our modeling ap-
proach does not provide any capabilities enabling
modeling an appearance of the GUI, thus object pro-
perties such as colors or font types are not set. Even
the distance between objects is not set properly, so
all resulting windows are distorted after execution.
We propose separate code responsible for the struc-
ture from the appearance in the paper (KRYSTOF,

Towards an MDA-based approach for development of a structural scope of the presentation layer

129

class win2

«Wrappers

k<lmage=> [

d F=Label=> l-l

wrapper_accl_img

wParentCfs

accl_img

note_|bl2

uH_Precedess

«V_Precedess

F=Button>> | 0

auth_btn2

5: An Example of the PIM transfoprmation: normalization of the “Precedes® relationship

2009). This is actually the same way that web - based
applications Mozilla (MCFARLANE, 2003) applica-
tions are developed. These applications use separate
documents in the CSS format, where the appearance
is defined declaratively. In the case of the Swing plat-
form, there is no direct support for CSS technology.
Swing is a library written in the Java language, which
belongs to a family of imperative programming lan-
guages. In imperative languages, the appearance is

defined by calling methods for involved objects. Tt
is much easier to write and maintain code for ap-
pearance in separate documents rather than in mo-
nolithic files. ITn contrast to Swing’s membership in
the imperative language family group, we are able to
define the appearance in a separate document de-
claratively! A condition of this approach is a support
the reflection mechanism (DUTCHYN, SZAFRON,
BROMLING, HOLST; 2001).

==ind o= ==Label== La
________________ 5:, title_blb
i 1 «ParamtOfs
m
==Fotm== [F] ==lmage== Fa ==Label== Lanl
form accl_img nate_lhl
«H Precedess «H_Precedgss
-
-~
/
ﬁ'renmf» _Prdcedess

=8implelnput== il ==Lahel== Lkl <<Button=> ol

pin_inpt pin_Ihl

¢H Precedess auth_btn
«%_Pracedess

=Simplelnput== @ ==Lahel== Lkl

e p— g

«H_Precedess Authorization of transaction #45678MO-87
«%_Precedess ! HIR
| Password @ Al provided information must be val

=CheckBox== |!£ == abel== Lan Sawe into history | e |

sih_chhox ﬁ dh_lbl

«H Precede

6: An UML profile - based model of a screen

130

J. Krystof

The reflection mechanism is a kind of meta - pro-
gramming enabling us to inspect and manipulate
objects at run time. We propose to design a docu-
ment for every generated class that will contain a de-
clarative definition of the appearance, which has
a similar syntax to the familiar format of CSS. Basi-
cally, the document contains a list of properties with
set values. At the moment, when a generated class is
executed, we read the file with the appearance defi-
nition and inspect particular objects if they provide
methods corresponding to listed properties. If there
is a match between a property and a method, we can
execute the method and provide it an argument —
the value of the property in order to set up the ap-
pearance. The reflection mechanism is available in
some current programming languages such as PHP,
Lisp, Net and Java. Since Swing is a library written
in the Java programming language, we were able to
use the separate appearance definition for generated
classes. The idea is illustrated on figure 7.

Using our approach also impacts current work
distribution, and moves a significant amount of
the workload away from a developer. This work is
instead done by analysts and designers in our ap-
proach, when they design a specification in the form
of a model. In the case of the suggested way of mo-
deling, the model is processed by a software frame-
work, which translates the model to a source code
for a particular platform. The resulting source code
can speed up work of the developer and presents
a benefit which is impossible to get by using blue-
prints or a wireframes.

Future work

The approach focuses on a model - based deve-
lopment of the structural scope of the presentation
layer. We see benefits especially in the possibility
to generate source code from the created model of
the user interface. We also see the next utilization
in providing the model for current software frame-
works aimed at the presentation layer, which can use
data from this model. With respect to this idea we
can think of e.g. the Jakarta Struts framework. Jakarta
Struts provides support for generating automated
validation data from web forms. The framework
needs information about objects corresponding to
input fields in order to validate incoming data. Such
information is presented in the structural scope of
the model and can be provided to the framework
in the right format. The right format can also be ob-
tained in the process of transformation. The current
approach of providing information related to a par-
ticular form relies on manual coding, so the code
generation may significantly save time when using
the structural model of the GUL

The meta - model also provides possibilities for
modeling the application logic of software appli-
cations. With respect to our proposal (KRYSTOF,
CHALUPOVA,; 2008) it is possible to generate me-
thods which can contribute to the underlying logic
of auser interface.

We also believe that intensive modeling of all three
layers in the software architecture can provide a rich
knowledge base for data mining and deep analysis.

font: Tahoma;

1: XLabel label = new XLabel (“Login”); foreground: black;

2: label.setFontStyle (“Courier”, ITALIC, 12);

3: label.setBackground (Color.green); XLabel

4: label.setMargin (10, 10, 5, 5); margin: 10px, 10px, b5px, bpx;
font-style: courier, italic, 12;
background-color: green;

7: Replacing an imperative appearance definition by a declarative definition

SUMMARY

We introduced an approach for model - driven development of the structural scope of the pre-
sentation layer. The approach strongly relies on modeling and its implementation is influenced by
the Model Driven Architecture concept. We created a UML profile in order to model four scopes of
the presentation layer. The profile provides rules for creating and validating models and can be ex-
tended in the case of any need.

A model of the presentation layer is used for a series of transformations which modify the initial ab-
stract model and finally create a very concrete model with platform specific information - the PSM.
The form of the PSM enables a straightforward and simple generation of source code for a particular
platform. The PSM is created as a class model and every class corresponds to a top - level container,
which is usually a window or a container, e.g. a form or a menu. Every class has a list of attributes cor-
responding to all nested objects of the container and has a method “init” which initializes all nested
objects and places them into the correct parent containers. The PSM is taken as an input for the last
transformation, which produces a set of files containing a particular source code. The source code
does not contain any information related to the appearance, so the appearance is defined in a sepa-

Towards an MDA-based approach for development of a structural scope of the presentation layer 131

rate file in a declarative language. In order to set the appearance in non - declarative language we use
areflective way of programming, so we are able to set the appearance even for an imperative language
such as Java.

The approach brings several benefits including an efficient creating specification of the presentation
layer in the phase of analysis, a platform independent development and highly maintainable code of
the appearance definition. The specification in the form of a model is directly used in the develop-
ment phase, when a developer starts his or her work by generation of the structural scope of the GUL
This speeds up the starting phase of the project and save time for other tasks. Furthermore, keeping
information related to the appearance and the structure separately makes source codes easy to main-
tain and the appearance can be changed without recompiling any source code file.

The approach fills a logical gap in modeling three layered software applications with the use of UML,
since current modeling tools provide support for modeling the presentation and data layers only. We
implemented a support for modeling the structural scope of the presentation layer with the Sparx
Enterprise Architect modeling tool and we also provide features for code generation.

SOUHRN

Vyuziti konceptu MDA ve vyvoji strukturalni oblasti prezenta¢ni vrstvy
V ¢lanku pfedstavujeme modelem Fizeny piistup vyvoje prezentaéni vrstvy. Metodicky postup je
ovlivnén konceptem modelem ¥izené architektury a my jej uvddime do souvislosti s problematikou
modelovéni grafickych uZzivatelskych rozhrani. Pro modelovani vyuzivime profil UML, ktery jsme
pro na3e potfeby modelovani vytvofili. UML profil poskytuje pravidla a prostiedky pro vytvafeni mo-
delél prezentaéni vrstvy, takZe je mozné nejenom modely vytvifet, ale je mozné je i validovat.
Ruéné vytvofeny model prezenta¢ni vrstvy pouzivame jako vstup pro sérii transformaci, které model
obohacuji. Transformace na tirovni modelu je ukon&ena stavem, kdy je vii€i svrchnim komponentam
vytvoien model t¥id, ktery vyuzivame pro generovani zdrojového kédu.
Zdrojovy kéd svrchnich komponent obsahuje deklarace viech prvkd, které se na tvorbé svrchni kom-
ponent€ podileji. Dile obsahuje metodu, kterd zajisti jejich umisténi do kontejnert. Vygenerovany
zdrojovy kéd neni zodpovédny za nastavovani vzhledu. Vzhled nastavujeme ke kazdé svrchni kom-
ponenté€ zvlast a v piipadg, Ze cilova platforma nepodporuje mechanismus CSS, vyuzivame k nasta-
vovani vlastnosti vzhledu reflexe.
generovat zdrojové kédy stejnych komponent pro jiné platformy. Moznost generovani kédu mutize
taktéz vyznamnym zptsobem zrychlit prici a uSetfit tak pracovni kapacity.
Dile nas koncept zapliuje logickou mezeru v modelovani t¥ivrstvych aplikact, jelikoz nabizime pro-
stfedky pro modelovani a zaroveri jsme schopni generovat zdrojovy kéd tak, jak je tomu u UML mo-
delovacich nastrojt, které takto podporuji aplika¢ni a datovou vrstvu. Intenzivni modelovani viech
tifvrstev a jejich soustfedéni v modelovacim néstroji mtize vytvofit zajimavé podminky pro ziskavani
znalosti o aplikaci.
Na3e modelovaci prostfedky zamérné neumoziuji generovat kéd nastavujici vzhled. Vzhled aplikace
je vyvijen a spravovan samostatné, coz ma nasledek snadnéjsi spravu vzhledu jako celku a lze tedy
vzhled aplikace ménit bez zdsahu do zdrojového kédu. Moznost takovéto kustomizace pak mutize vy-
razn€ zvysit zdjem o softwarovy produkt a zvysit konkurenceschopnost softwarové firmy.

MDA, UML, modelovéni, prezenta¢ni vrstva, struktura, generovani zdrojového kédu

The paper is written as a part of solution of a research plan PEF MZLU MSM 6215648904/03/03/02.

LITERATURE 1999: UIML: an applianceindependent xml user

MCFARLANE, N.: Rapid Application Development intf.:rface.language. In: Computer Networks 31, El-
with Mozilla. Prentice Hall 2003, 800 pages, ISBN _ S€vier Science, 1999.
078.013 1423435, BACHMANN, F, BASS, L., CARRIERE, J, CLE-
ABOUZAHRA, A., BZIVIN, J, FABRO M. D. D, MENTS B, GARLAN, D, TVERS, I, NORD, &,
JOUAULT, F, 2005: A Practical Approach to Bridg- ~ LITTLE, R., 2005: Software Architecture Docu-

ing Domain Specific Languages with UMLprofiles. mentation in Practice: Documenting Architectural
In: Proceedings of the Best Practices for Model Layers. Technical Report CMU/SEL-2000-SR-004,

Driven Software Development at OOPSLA05 Carnegie Mellon Software Engineering Institute,
’ 2005.
2005.

CAL. A. L. WILLIAMS. S. M.. SHUSTER I E. ciples of gui programming using views. In: SIGCSE

132

J. Krystof

'04 Proceedings of the 35" SIGCSE technical sym-
posium on Computer science education, 2004.

BOAS, G., 2004: Template Programming for
Model-Driven Code Generation, [online], [cit.
2009-06-17]. Available at WWW: <http://www.
softmetaware.com/oopsla2004/emdeboas.pdf>

DUTCHYN, C.,SZAFRON, P.LU, D., BROMLING,S.,
HOLST, W., 2001: Multi-dispatch in the Java Vir-
tual Machine design and implementation. In:
COOTS'01 proceedings, 2001.

ENGELS, G., HECKEL, R., SAUER, S., 2000: UML
- a universal modeling language? ICATPN 2000,
LNCS 1825, Springer-Verlag. 2000.

JOHNSTON, S., 2004: Rational UML Profil for Busi-
ness Modeling. [online], 2004 [cit. 2009-06-17].
Available at WWW: <http://www-128.ibm.
com/developerworks/rational/ library/5167.
html#authorl>

KOCH, N., BAUMEISTER, H., HENNICKER, R.,
MANDEL, L., 2000: Extending UML to Model
Navigation and Presentation in Web Applications.
In: Proceedings of Modelling Web Applications in
the UML Workshop, 2000.

KRYSTOF, J., CHALUPOVA, N., 2008: Prerequisites
for new GUI modelling approach. In: JANECH, J.
Objekty 2008. Zilina: Zilinska univerzita v Zilinie,
2008, p. 127-136.ISBN 978-80-8070-927-3.

KRYSTOF, J., MOTYCKA, A., 2008: Metamodel for
presentation layer, In: Proceedings of the 11th In-
ternational Multiconference Information Society
- 1S 2008. 2008.

KRYSTOF, J., 2009: An automated platform inde-
pendent realization of GUI with use of UML. In
Gaudeamus. IMEA 2009. Hradec Krilové: Uni-
verzity Hradec Krilové, 2009, p. 14-18. ISBN
978-80-7041-851-2.

KRYSTOF, J., 2009: Formal describtion of layout
in graphical user interfaces. In: 11th Interna-
tional Conference MEKON 2009. 1. vyd. Ostrava:
VSB - TUO, Faculty of Economics, 2009, ISBN
978-80-248-2013-2.

KRYSTOF, J., 2009: Impact of the Model Driven Ar-
chitecture on Competitiveness of Software Pro-
ducers. In: ZUFAN, P. Firm and competitive envi-
ronment. 2009 — 5. ¢4st. Brno: MSD, s. r. 0., 2009,
p. 61-65.ISBN 978-80-7392-088-3.

MCFARLANE, N., 2003: Rapid Application De-
velopment with Mozilla. Prentice Hall 2003, 800
pages, ISBN 978-0131423435.

MYERS, B. A., ROSSON, M. B., 1992: Survey on
user interface programming. In: Proceedings of
SIGCHI'92, Monterey, California, 1992.

Object Management Group: MOF 2.0/XMI Mapping
Specification v2.1 [online], 2009 [cit. 2009-06-17].
Available at WWW: <http://www.omg.org/docs/
formal/05-09-01.pdf>

Object Management Group: UML 2.0 OCL Specifi-
cation. [online], 2003 [cit. 2009-06-17]. Available at
WWW: < http://www.omg.org/docs/ptc/03-10-14.
pdi.

Object Management Group: UML 2.0 Superstruc-
ture. [online], 2005 [cit. 2009-06-17]. Available at
WWW: <http://www.omg.org/spec/UML/2.0/Su-
perstructure/PDF>.

PILONE, D., PITMAN, N, 2005: UML 2.0 in
a Nutshell. CA, USA: O Reilly, 2005. ISBN
0-596-00795-7.

PUERTA, A., 1996: The Mecano Project: Compre-
hensive and Integrated Support for Model-Based
Interface Development. In: J. Vanderdonckt (ed.):
Computer-Aided Design of User Interfaces. Na-
mur: Namur University Press, 1996.

RYDER, B. G., SOFFA, M., BURNETT, M., 2005:
The impact of software engineering research on
modern progamming languages, ACM Transac-
tions on Software Engineering and Methodology
(TOSEM), 2005.

SCHAUERHUBER, A., WIMMER, M., KAPSAM-
MER, E., 2006: Bridging existing Web modeling
languages to model-driven engineering: a meta-
model for WebML, Workshop proceedings of
the sixth international conference on Web engi-
neering, 2006.

SOLEY, R., 2000: Model Driven Architecture.
[online], 2000 [cit. 2009-06-17]. Available at
WWW: < http://www.catalysis.org/publications/
papers/2001-mda-Overview-00-11-05.pdf>

ZIADI T.,, TRAVERSON B., JEZEQUEL]J., 2002:
From a UML Platform Independent Component
Model to Platform Specific Component Models,
In: Proceedings of Workshop in Software Model
Engineering, Fifth International Conference on
the Unified Modeling Language, 2002.

Address
Ing. Jan Krystof, Ustav informatiky, Mendelova zemé&délska a lesnickd univerzita v Brng&, Zemédélska 1,

613 00 Brno, Ceskd republika

