
123

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS

SBORNÍK MENDELOV Y ZEMĚDĚLSKÉ A LESNICKÉ UNIV ERZITY V BRNĚ

Volume LVII 12 Number 6, 2009

TOWARDS AN MDA-BASED APPROACH
FOR DEVELOPMENT OF A STRUCTURAL

SCOPE OF THE PRESENTATION LAYER

J. Kryštof

Received: June 26, 2009

Abstract

KRYŠTOF, J.: Towards an MDA-based approach for development of a structural scope of the presentation layer.
 Acta univ. agric. et silvic. Mendel. Brun., 2009, LVII, No. 6, pp. 123–132

This paper presents an approach for developing the presentation layer of so� ware applications.
The approach is based on the concept of the Model Driven Architecture (MDA) and uses a UML
– based model of graphical user interfaces, which is created according to rules defi ned in a meta –
model. The meta – model is not oriented to a particular platform, thus all designed models can be
created independently of the programming language and widget library. This platform independent
UML based model can be transformed into source – code for an arbitrary programming language and
can be used in a so� ware development process.
The meta – model of our approach is an extension of the common UML and provides support for
modeling the presentation layer. The meta – model thus fi lls a gap that exists in modeling three – laye-
red so� ware applications, beside the application and the data layer. By providing this possibility for
modeling the presentation layer, we can crucially impact current approaches to the development of
three layered so� ware applications. All model artifacts contain essential information about the gra-
phi cal user interface and can be used for a code generation. Since the UML is widely used by analysts,
they can produce models which de-facto represent source code and thus they reduce the workload
for programmers, who create source code by some traditional approaches. Our model – based ap-
proach also strictly separates the appearance and the structure of graphical user – interfaces and both
of them are developed separately, which brings higher modularity of so� ware.
In this paper, we demonstrate our development approach by focusing on the structure of graphi-
cal user interfaces. Our approach is infl uenced by the concept of Model Driven Architecture and we
deal with all related issues, such as meta – model, user models, model transformations and source –
code generation. For evaluating our approach, we designed and developed a so� ware framework, we
integrated it into a generic modeling tool, and used approach principles during the development of
a module of an information system.

MDA, UML, modeling, presentation layer, structure, source code generation

The presentation layer is not a simple homoge-
neous structure and it’s complexity reaches out of
frame of this paper. In spite of the complexity of
the presentation layer, we can defi ne it as (MYERS,
ROSSON; 1992) a so� ware component, that trans-
lates a user action into one or more requests for ap-
plication functionality, and that provides to the user
feedback about the consequences of his or her ac-
tion. The defi nition refers to all visible components
of a so� ware application such as a window, a but-

ton or a text section and also refers to an application
logic, which accesses controlling units. The applica-
tion logic can determine all users’ actions with their
parameters.

When developing the presentation layer, we can
follow two traditional approaches (RYDER, SOFFA,
BURNETT; 2005): The source code for the visi-
ble component can be obtained by hard – coding,
or a specialized tool can be used enabling us to get
the source code by visual programming. We can

124 J. Kryštof

identify several drawbacks in both of these, thus we
usually use their combination. There still remains
one drawback when we use the combination, which
is coming from programming itself rather than any
technique: the source code is mostly intended for
a particular widget library and cannot be used for
any other. We characterise this drawback as plat-
form dependency, which can be eliminated by mo-
de ling (ZIADI, TRAVERSON, JEZEQUEL; 2002).

The presentation layer is located above the appli-
cation and the data layer in the so� ware architecture
(BACHMANN, BASS, CARRIERE, CLEMENTS,
GARLAN, IVERS, NORD, LITTLE; 2005). During
the development of the so� ware, the modeling can
be intensively employed, so we can use the UML for
modeling the application layer or the ERD1 for mo-
de ling the data layer. As we have already mentioned,
modeling allows the expression of important infor-
mation independently of a target platform. Modeling
thus can save a lot of work when a current platform
needs to be replaced with a diff erent one in order
to increase performance or decrease running costs.
However, we do not fi nd this kind of support in cur-
rent modeling tools and thus development is mostly
based only on traditional approaches. We perceive
this state as a crucial gap and we want to provide a so-
lution for it by designing a model – based approach
for the development of the presentation layer.

It is obvious, that creating models is a time con-
suming activity and our goal is to use them as ef-
fectively as possible, and not only as a blueprint or
a sketch as with current approaches. If we take into
account models from the application or the data
layer, we can fi nd in modeling tools support in appli-
cations for generating class skeletons with attributes
and get/set methods or generation of DDL2 scripts
for a set of target platforms. This automated genera-
tion can save time signifi cantly during the develop-
ment phase, if we consider that in a so� ware system
can be thousands of classes or database tables. With
respect to these features of automated code genera-
tion, we want to have similar support when mode-
ling components of graphical user interfaces (GUI3).

MATERIAL AND METHODS
Our research is divided into two parts. The fi rst

part focuses on a defi nition of the modeling concept
which includes a modeling language and rules for
modeling the presentation layer. In order to model
this domain, we can use an existing modeling lan-
guage or create a new one. The second part focuses
on processing model data and transformations re-
sulting in the fi nal model, which will be specifi c for
a particular platform. Furthermore, the second part

deals with the issue of source code generation from
models.

Choosing the modeling language
In order to provide the modeling concept, we

need to choose a modeling language. Firstly we
need to defi ne requirements for the modeling lan-
guage and use an existing language or create a new
one. With regard to our goals we defi ne following re-
quirements for a modeling language:

Independence the target platform• .
The modeling language must allow us to express
all necessary information without knowledge of
any existing platform. We are able to gather dat,
which will be valid even a� er a change of plat-
form.
Formalness• .
In order to transform data from our models, we
want the language be formal – thus enabling us to
process data automatically.
Easy adaptation• .
We prefer to provide a language which is easy to
adopt. We do not want to force analysts or de ve lo-
pers to spend time studying a new language, and
we prefer to use an existing language with a long
tradition, standardized and simple. Users of such
a language can directly focus on the real issue and
do not have to bear all the diffi culties coming from
adopting a new language.
Expressive power• .
The modeling language must be powerful enough
to describe the target domain. The language
should also be fl exible and extensible, to refl ect
possible changes in the target platform.

There have been several modeling languages de-
signed in order to model graphical user interfaces.
They provide independence from the target platform
and can be processed automatically, so we can choose
from these. We can mention UIML (ABRAMS, PHA-
NOURIOU, BATONGBACAL, WILLIAMS, SHUS-
TER; 1999), which is based on XML4 and allows us
to model user interfaces for windows applications
and web browser applications as well. Another si-
mi lar language is MIMIC (PUERTA; 1996). However,
they do not fulfi ll defi ned requirements, since they
are not widely used and not common. Furthermore,
they save model data in a pro prie ta ry format so
the data can be read and processed only via spe cia-
li zed tools. These facts impact negatively on the us-
ability of the modeling language and the speed of
ada pta tion.

A� er careful analysis we choose UML, which ful-
fi lls all defi ned requirements and we can declare fol-
lowing:

1 Entity-relationship model – http://en.wikipedia.org/wiki/Entity-relationship_model
2 Data Defi nition Language – http://en.wikipedia.org/wiki/Data_Defi nition_Language
3 Graphical User Interface – http://en.wikipedia.org/wiki/Graphical_user_interface
4 Extensible Markup Language – http://cs.wikipedia.org/wiki/Extensible_Markup_Language

 Towards an MDA-based approach for development of a structural scope of the presentation layer 125

UML provides capabilities to model indepen-•
dently on any target platform so the UML – based
models are durable (PILONE, PITMAN; 2005).
UML is defi ned formally in its own meta – model •
with use of the MOF language (Object Manage-
ment Group, 2005), which implies that UML data
can be processed automatically. There also exists
a standardization for UML data exchange via XMI5
format (Object Management Group, 2001): UML
models can be exchanged among diff erent model-
ing tools, which support XMI export/import.
UML has become an industrial standard as an ob-•
ject oriented modeling language (ENGELS,
HECKEL, SAUER; 2000). It has an advantage for
developers who have already used this language
and do not need to spend a time on learning it.
Furthermore, the UML language provides graph-
ical notation which supports novices in adopting
it.
Since version 2.0, UML is enriched by an exten-•
sion mechanism of UML profi les. This allows us to
defi ne restrictions and extensions to this all – pur-
pose language (ABOUZAHRA, BZIVIN, FABRO;
JOUAULT, 2005) and tailor the UML to describe
a domain of our interest.
The UML language is also recommend by diff e-•
rent methodologies such as the RUP6 and RAD7
and its intensive use brings a potential for binding
models of all three so� ware layers together, creat-
ing a large data base of UML data.

Tailoring the UML for domain oriented
modeling

As we have already mentioned in the previous
section, the UML provides an extension mecha-
nism in the form of so – called “profi les” for mo-
de ling specifi c domains. UML profi les are used to
model those aspects of systems or applications that
are not directly describable by native UML elements
(ABOUZAHRA, BZIVIN, FABRO, JOUAULT; 2005).
A profi le is a consistent set of stereotypes, constraints
and tagged values. A stereotype represents a class of
elements, so we can diff erentiate between diverse
ele ments of a system. A stereotype can be marked by
a geometric icon and can be easily recognized from
other stereotypes. While creating our profi le, we de-
signed a set of icons and shapes (see fi g. 3) in order to
help improve orientation when working with large
models. Constraints can be attached to a stereotype
either in an informal form or in the form of OCL
expressions (Object Management Group, 2003).
A stereotype is created as an instance of the meta –
element of the UML and can have meta – attributes.

These meta – attributes are called tagged values and
can be used for recording specifi c properties.

UML profi les have been successfully applied to
modeling web systems (KOCH, BAUMEISTER,
HENNICKER, MANDEL; 2000), (KARWACZYN-
SKI, MACIEJEWSKI; 2004) and business processes
(JOHNSTON, 2004). With respect to results of these
applications, we believe that the mechanism of pro-
fi les enables us also to model the scopes of the pre-
sen ta tion layer.

UML data processing
In order to generate source code from UML mo-

dels we need to be able to process UML data. We as-
sume that there is an application programming in-
terface available in the current modeling tool, in
a manner as we present in the paper (KRYŠTOF, J.,
CHALUPOVÁ, N.; 2008). In this case we are able
to process data interactively while working with
the tool. Another way is to process data which have
already been exported to the XMI format. XMI is
a language for meta – data interchange and can be
applied to all data, which are describable in the lan-
guage MOF (Object Management Group, 2005). As
we have already mentioned, the UML is defi ned by
the MOF, thus we can use the XMI in order to ma-
nipulate it.

The UML enables us to create, maintain and de-
velop (SOLEY, 2000) models and the OMG8 defi nes
a methodical guideline – the MDA (Model Driven
Architecture) for processing UML data in so� ware
engineering. We deal with issues of the MDA in
the paper (KRYŠTOF, 2009a) in detail, so we men-
tion its principles here only briefl y.

The MDA assumes the existence of a Platform In-
dependent Model (PIM) created according to some
rules in a UML profi le. In this case, the UML pro-
fi le represents a meta – model. By applying the pro-
fi le on a domain of our interest, we obtain the PIM,
which cannot contain any information referring any
platform. The PIM stands as an input for model –
model transformation, which results in the Platform
Specifi c Model (PSM) that contains information re-
lated to a particular platform. The PSM stands as
an input for model – text transformation, which re-
sults in source code for a chosen platform.

Source code generation
Source code generation is our goal and the last

step in our approach to developing the presenta-
tion layer. By following the MDA, it is necessary to
design a transformation of the PSM into a source
code. As we have already mentioned, it is possible
to manipulate UML data via the format XMI, thus

5 XML Metadata Interchange
6 Rational Unifi ed Process – http://en.wikipedia.org/wiki/IBM_Rational_Unifi ed_Process
7 Rapid Application Development – http://en.wikipedia.org/wiki/Rapid_application_development
8 Object Management Group – http://www.omg.org/

126 J. Kryštof

we can perform the XSLT9 transformation. How-
ever, the complex format of XMI documents and
non trivial transformation make writing XSLT pro-
grams for code generation diffi cult and error – prone
(SCHAUERHUBER, WIMMER, KAPSAMMER;
2006). We can also use a template – based tech-
nique for text generation, as a paper (BOAS, 2004)
suggests. Template – based generation is actually
nothing new, since it has been used by generations
of web pages. We can mention several frameworks
which allow the template – based code generation,
such as JSP, PHP, Velocity, JET, StringTemplate, etc.
Finally, we can create our own specialized program
or a library, which will generate text from underlying
data. Regarding the wide off er of so� ware libraries
for template – based technique and simple usage, we
decided to use this approach. The process of trans-
formation is illustrated in fi gure 1.

Implementation of the approach
We have defi ned and argued for methods which

we use for our model – based development ap-
proach of the presentation layer. We can summarize
the process of implementation in following steps:

Design a meta – model for the presentation 1.
layer.
Integrate the meta – model in a modeling tool 2.
supporting UML.

Design transformations PIM – PSM, PSM – 3.
source code and create corresponding templates
for a particular platform.
Evaluate the approach by creating models of 4.
a so� ware application, generate source – codes
and comment results.

RESULTS
We demonstrate results of the development of

a window for a module of an information system
(see fi g. 6). Since our meta – model is large, we deal
only with the structure of user interface and we
do not focus on other aspects such as presentation
logic, navigation, etc. Detailed information regard-
ing the whole meta – model can be found in our pa-
per (KRYŠTOF, MOTYČKA; 2008).

The meta – model of the presentation layer –
the structural scope

The meta – model is designed with the use of
the UML profi le mechanism and has four scope
domains: structure, functionality, information and
presentation. There exists a corresponding set of
stereotypes in our profi le for each domain and we
defi ned rules represented by meta – association be-
tween them (see fi g.4).

The structural domain of the meta – model pro-
vides stereotypes corresponding to objects and re-

9 XSL Transformations – http://www.w3.org/TR/xslt

1: An overview of model transformation

class StructDom

Container

+ boxing: EBoxing

Window

Dialog

ControllUnit Text

Button

Select

SimpleInput

GuiElement

+ isAbstract: isStereotypeAbstract = true

«metaclass»
Class

+ isActive: Boolean

Label

Paragraph
TextArea

PresentationUnit

Panel

Media

Video

Image

Menu

MenuBar
MenuItem

Group

CheckBox

RadioButton DropDownBox

Input

Form
Tab

Separator
«enumeratio...

EBoxing

 Horizontal
 Vertical

1..*

«extends»

0..*

1..*

2: The Meta – model of the structural scope

 Towards an MDA-based approach for development of a structural scope of the presentation layer 127

lations, which assemble visible part of the GUI. We
use three main abstract stereotypes for modeling vis-
ible objects of the GUI: containers, control units and
presentation units, which are ancestors of the ab-
stract stereotype “GuiElement” (see fi g. 2). Realiza-
tions of these abstract stereotypes are for instance
“Panel”, “Button” or “Text”. By fi nding a proper set
of these stereotypes we can model a whole window
or its parts. Examples of stereotypes corresponding
to relations are “ParentOf” or “Precedes” (see fi g. 4).
Both relations are connected with the implementa-
tion of layout of the GUI. The layout can be imple-
mented in two basic ways (BISHOP, HORSPOOL;
2004): fi rstly by absolute positioning, when a posi-
tion of each object is defi ned explicitly by coordi-
nates, and secondly by relative positioning, when
the fi nal position of an object is determined by
the logic of its parent container. We implemented
relative positioning in our approach, which implies
that every object is present in a container. The re-
lation “ParentOf” can exist between a stereotype
of the “Container” type, and any other stereotype
which is a subtype of the “GuiElement”. The rela-
tion “Precedes” has two realizations: “H_Precedes”
and “V_Precedes”, which can exist between any sub-
types of the “GuiElement” and defi nes if objects are
placed horizontally or vertically. It is worth men-
tioning that relations “ParentOf” and “Precedes” are
not refl exive and are similar to the “Dependency”

relation of the UML. This means that every member
of such a relation is either client or supplier. In other
words, we can say that the relationship is oriented.
We will focus on these relationships in more detail
later when we talk about the issue of model transfor-
mation.

Meta – model integration into a modeling tool
The meta – model in the form of the UML pro-

fi le can be integrated into any modeling tool which
supports the UML profi le mechanism. Regarding
our needs, we also require a modeling tool to sup-
port import/export to the XMI format or to provide
an appropriate API enabling us to access UML data.
Nowadays, there exist several modeling tools or
frameworks providing these features and we can re-
fer for instance to Sparx Enterprise Architect, Visual
Paradigm or EMF.

We decided to use the Enterprise Architect (EA)
modeling tool and we implemented a set of methods
communicating with its API in the .Net platform.
We use these methods for validating models and for
UML data manipulation, particularly for the pro cess
of model transformation. We also integrated our
own user interface into the EA, thanks to support
from the COM10 interface. Our user interface serves
for launching transformations and code generating
interactively, which makes modeling and developing
easier and faster. The EA also provides a language
called ShapeScript (see fi g. 3) enabling us to defi ne
shapes and icons for stereotypes. Therefore we de-
signed a set of icons and shapes to create unique ap-
pearance of stereotypes in order to make creating
and maintaining models more user – friendly.

Transformation
In order to generate source code, we need to per-

form a series of transformations of UML models, so
that we get optimal conditions for straightforward
and not too complex code generation. Transforma-
tions include a model – model transformation in
the PIM and the PSM and also model – text trans-

shape main{
 defSize(110, 60);
 rectangle(0, 0, 100, 100);
 addsubshape(“xicon”, 24, 32);
 addsubshape(“xname”, 100, 34);
 shape xicon

 editablefi eld = “stereotype”;
 print(“<<#stereotype#>>”);
 image(“form.wmf”, 325, 10, 405, 90);

 shape xname

 h_align = “center”;
 editablefi eld = “name”;
 moveto(0, 0);
 lineto(100, 0);
 println(“#name#”);

3: A definition of stereotype appearance in ShapeScript language

10 Component Object Model – http://www.microso� .com/com

128 J. Kryštof

formation from the PSM to source code. The issue of
transformation will be illustrated by transformation
of “Precede” relationships.

The meta – model allows any element of the GUI
to take part in both “H_Precedes” and “V_Precedes”
relationships by being in the source role. This state is
usually not allowed in a real implementation, since
every object must lie in a container. The top – level
container is a window or a web page. Containers
are usually onedimensional either with a horizon-
tal or a vertical layout: a new member of such a con-
tainer is laid out next to the last member or below
the last member, respectively. Thus no object can be
present below/above and next to any other simul-
taneously in the same container. We have designed
an algorithm (KRYŠTOF, 2009b) for removing this
unweldom phenomena in models. A� er the trans-
formation, we get a new model which is enriched by
additional “anonymous” containers of type “Wrap-
per”. The model is still platform independent be-
cause we did not add any information related to
the target platform during the transformation, and
we denote the new PIM as the PIM2. Of course, there
can be a need to perform more transformations and
the last transformation creates the PIMN. An illustra-
tion of transformation of the “Precedes” relationship
is shown in fi gure 5. The transformation was applied
on the stereotype “accl_image” (see fi gure 6).

The PIMN is taken as an input for the next trans-
formation, which enriches the current model with
information referring to the target platform, so we
get the PSM. Our transformation adds tagged va lues
called “ptype”, which represents the data type of

each stereotype. For this purpose, we created a map-
ping table, which maps stereotypes to data types in
a particular platform. The result of the transforma-
tion is a class model, where every class corresponds
to a top – level container. Every such class contains
a list of attributes, which correspond to all nested
objects of the top – level window. Furthermore, class
also contains a method “init”, which is responsible
for initialization of all attributes and placing them
into the right containers. This class is subsequently
transformed into a source code fi le and can be com-
piled by an appropriate compiler.

The last transformation translates the PSM into
source code fi les. The transformation is based on
a set of templates, which are designed for a par ti cu-
lar target platform. Templates are fi lled by model
data and fl ushed into a fi le.

Application of the concept
We have already experimented with our concept

by developing a module of a so� ware system. We
chose the Java Swing platform as the target widget
library and modeled its screens with the use of
the profi le. A� er the process of transformation we
had a set of fi les containing source code oriented to
building the structure of the GUI. Our modeling ap-
proach does not provide any capabilities enabling
mo de ling an appearance of the GUI, thus object pro-
per ties such as colors or font types are not set. Even
the distance between objects is not set properly, so
all resulting windows are distorted a� er execution.
We propose separate code responsible for the struc-
ture from the appearance in the paper (KRYŠTOF,

4: The meta – model of “ParentOf” and “Precedes” relations

 Towards an MDA-based approach for development of a structural scope of the presentation layer 129

2009). This is actually the same way that web – based
applications Mozilla (MCFARLANE, 2003) applica-
tions are developed. These applications use separate
documents in the CSS format, where the ap pea ran ce
is defi ned declaratively. In the case of the Swing plat-
form, there is no direct support for CSS technology.
Swing is a library written in the Java language, which
belongs to a family of imperative programming lan-
guages. In imperative languages, the appearance is

defi ned by calling methods for involved objects. It
is much easier to write and maintain code for ap-
pea ran ce in separate documents rather than in mo-
no li thic fi les. In contrast to Swing’s membership in
the imperative language family group, we are able to
defi ne the appearance in a separate document de-
claratively! A condition of this approach is a support
the refl ection mechanism (DUTCHYN, SZAFRON,
BROMLING, HOLST; 2001).

5: An Example of the PIM transfoprmation: normalization of the “Precedes“ relationship

6: An UML profile – based model of a screen

130 J. Kryštof

The refl ection mechanism is a kind of meta – pro-
gramming enabling us to inspect and manipulate
objects at run time. We propose to design a docu-
ment for every generated class that will contain a de-
clarative defi nition of the appearance, which has
a similar syntax to the familiar format of CSS. Basi-
cally, the document contains a list of properties with
set values. At the moment, when a generated class is
executed, we read the fi le with the appearance defi -
nition and inspect particular objects if they provide
methods corresponding to listed properties. If there
is a match between a property and a method, we can
execute the method and provide it an argument –
the value of the property in order to set up the ap-
pearance. The refl ection mechanism is available in
some current programming languages such as PHP,
Lisp, Net and Java. Since Swing is a library written
in the Java programming language, we were able to
use the separate appearance defi nition for generated
classes. The idea is illustrated on fi gure 7.

Using our approach also impacts current work
distribution, and moves a signifi cant amount of
the workload away from a developer. This work is
instead done by analysts and designers in our ap-
proach, when they design a specifi cation in the form
of a model. In the case of the suggested way of mo-
de ling, the model is processed by a so� ware frame-
work, which translates the model to a source code
for a particular platform. The resulting source code
can speed up work of the developer and presents
a benefi t which is impossible to get by using blue-
prints or a wireframes.

Future work
The approach focuses on a model – based de ve-

lop ment of the structural scope of the presentation
layer. We see benefi ts especially in the possibility
to generate source code from the created model of
the user interface. We also see the next utilization
in providing the model for current so� ware frame-
works aimed at the presentation layer, which can use
data from this model. With respect to this idea we
can think of e.g. the Jakarta Struts framework. Jakarta
Struts provides support for generating automated
validation data from web forms. The framework
needs information about objects corresponding to
input fi elds in order to validate incoming data. Such
information is presented in the structural scope of
the model and can be provided to the framework
in the right format. The right format can also be ob-
tained in the process of transformation. The current
approach of providing information related to a par-
ticular form relies on manual coding, so the code
generation may signifi cantly save time when using
the structural model of the GUI.

The meta – model also provides possibilities for
modeling the application logic of so� ware appli-
cations. With respect to our proposal (KRYŠTOF,
CHALUPOVÁ; 2008) it is possible to generate me-
thods which can contribute to the underlying logic
of a user interface.

We also believe that intensive modeling of all three
layers in the so� ware architecture can provide a rich
knowledge base for data mining and deep analysis.

1: XLabel label = new XLabel (“Login”);
2: label.setFontStyle (“Courier”, ITALIC, 12);
3: label.setBackground (Color.green);
4: label.setMargin (10, 10, 5, 5);

*
 font: Tahoma;
 foreground: black;

XLabel
 margin: 10px, 10px, 5px, 5px;
 font-style: courier, italic, 12;
 background-color: green;

7: Replacing an imperative appearance definition by a declarative definition

SUMMARY
We introduced an approach for model – driven development of the structural scope of the pre-
sentation layer. The approach strongly relies on modeling and its implementation is infl uenced by
the Model Driven Architecture concept. We created a UML profi le in order to model four scopes of
the presentation layer. The profi le provides rules for creating and validating models and can be ex-
tended in the case of any need.
A model of the presentation layer is used for a series of transformations which modify the initial ab-
stract model and fi nally create a very concrete model with platform specifi c information – the PSM.
The form of the PSM enables a straightforward and simple generation of source code for a particular
platform. The PSM is created as a class model and every class corresponds to a top – level container,
which is usually a window or a container, e.g. a form or a menu. Every class has a list of attributes cor-
responding to all nested objects of the container and has a method “init” which initializes all nested
objects and places them into the correct parent containers. The PSM is taken as an input for the last
transformation, which produces a set of fi les containing a particular source code. The source code
does not contain any information related to the appearance, so the appearance is defi ned in a sepa-

 Towards an MDA-based approach for development of a structural scope of the presentation layer 131

rate fi le in a declarative language. In order to set the appearance in non – declarative language we use
a refl ective way of programming, so we are able to set the appearance even for an imperative language
such as Java.
The approach brings several benefi ts including an effi cient creating specifi cation of the presentation
layer in the phase of analysis, a platform independent development and highly maintainable code of
the appearance defi nition. The specifi cation in the form of a model is directly used in the develop-
ment phase, when a developer starts his or her work by generation of the structural scope of the GUI.
This speeds up the starting phase of the project and save time for other tasks. Furthermore, keeping
information related to the appearance and the structure separately makes source codes easy to main-
tain and the appearance can be changed without recompiling any source code fi le.
The approach fi lls a logical gap in modeling three layered so� ware applications with the use of UML,
since current modeling tools provide support for modeling the presentation and data layers only. We
implemented a support for modeling the structural scope of the presentation layer with the Sparx
Enterprise Architect modeling tool and we also provide features for code generation.

SOUHRN
Využití konceptu MDA ve vývoji strukturální oblasti prezentační vrstvy

V článku představujeme modelem řízený přístup vývoje prezentační vrstvy. Metodický postup je
ovlivněn konceptem modelem řízené architektury a my jej uvádíme do souvislosti s problematikou
modelování grafi ckých uživatelských rozhraní. Pro modelování využíváme profi l UML, který jsme
pro naše potřeby modelování vytvořili. UML profi l poskytuje pravidla a prostředky pro vytváření mo-
delů prezentační vrstvy, takže je možné nejenom modely vytvářet, ale je možné je i validovat.
Ručně vytvořený model prezentační vrstvy používáme jako vstup pro sérii transformací, které model
obohacují. Transformace na úrovni modelu je ukončena stavem, kdy je vůči svrchním komponentám
vytvořen model tříd, který využíváme pro generování zdrojového kódu.
Zdrojový kód svrchních komponent obsahuje deklarace všech prvků, které se na tvorbě svrchní kom-
ponentě podílejí. Dále obsahuje metodu, která zajistí jejich umístění do kontejnerů. Vygenerovaný
zdrojový kód není zodpovědný za nastavování vzhledu. Vzhled nastavujeme ke každé svrchní kom-
ponentě zvlášť a v případě, že cílová platforma nepodporuje mechanismus CSS, využíváme k nasta-
vování vlastností vzhledu refl exe.
Náš koncept přináší několik výhod, mezi které patří platformní nezávislost modelů a tedy i možnost
generovat zdrojové kódy stejných komponent pro jiné platformy. Možnost generování kódu může
taktéž významným způsobem zrychlit práci a ušetřit tak pracovní kapacity.
Dále náš koncept zaplňuje logickou mezeru v modelování třívrstvých aplikací, jelikož nabízíme pro-
středky pro modelování a zároveň jsme schopni generovat zdrojový kód tak, jak je tomu u UML mo-
delovacích nástrojů, které takto podporují aplikační a datovou vrstvu. Intenzivní modelování všech
tří vrstev a jejich soustředění v modelovacím nástroji může vytvořit zajímavé podmínky pro získávání
znalostí o aplikaci.
Naše modelovací prostředky záměrně neumožňují generovat kód nastavující vzhled. Vzhled aplikace
je vyvíjen a spravován samostatně, což má následek snadnější správu vzhledu jako celku a lze tedy
vzhled aplikace měnit bez zásahu do zdrojového kódu. Možnost takovéto kustomizace pak může vý-
razně zvýšit zájem o so� warový produkt a zvýšit konkurenceschopnost so� warové fi rmy.

MDA, UML, modelování, prezentační vrstva, struktura, generování zdrojového kódu

The paper is written as a part of solution of a research plan PEF MZLU MSM 6215648904/03/03/02.

LITERATURE
MCFARLANE, N.: Rapid Application Development

with Mozilla. Prentice Hall 2003, 800 pages, ISBN
978-0131423435.

ABOUZAHRA, A., BZIVIN, J., FABRO M. D. D.,
JOUAULT, F., 2005: A Practical Approach to Bridg-
ing Domain Specifi c Languages with UML profi les.
In: Proceedings of the Best Practices for Model
Driven So� ware Development at OOPSLA’05,
2005.

ABRAMS, M., PHANOURIOU, C., BATONGBA-
CAL, A. L., WILLIAMS, S. M., SHUSTER, J. E.,

1999: UIML: an applianceindependent xml user
interface language. In: Computer Networks 31, El-
sevier Science, 1999.

BACHMANN, F., BASS, L., CARRIERE, J., CLE-
MENTS, P., GARLAN, D., IVERS, J., NORD, R.,
LITTLE, R., 2005: So� ware Architecture Docu-
mentation in Practice: Documenting Architectural
Layers. Technical Report CMU/SEI-2000-SR-004,
Carnegie Mellon So� ware Engineering Institute,
2005.

BISHOP, J., HORSPOOL, N., 2004: Developing prin-
ciples of gui programming using views. In: SIGCSE

132 J. Kryštof

’04 Proceedings of the 35th SIGCSE technical sym-
posium on Computer science education, 2004.

BOAS, G., 2004: Template Programming for
Model-Driven Code Generation, [online], [cit.
2009-06-17]. Available at WWW: <http://www.
so� metaware.com/oopsla2004/emdeboas.pdf>

DUTCHYN, C., SZAFRON, P. LU, D., BROM LING, S.,
HOLST, W., 2001: Multi-dispatch in the Java Vir-
tual Machine design and implementation. In:
COOTS’01 proceedings, 2001.

ENGELS, G., HECKEL, R., SAUER, S., 2000: UML
– a universal modeling language? ICATPN 2000,
LNCS 1825, Springer-Verlag. 2000.

JOHNSTON, S., 2004: Rational UML Profi l for Busi-
ness Modeling. [online], 2004 [cit. 2009-06-17].
Available at WWW: <http://www-128.ibm.
com/developerworks/rational/ library/5167.
html#author1>

KOCH, N., BAUMEISTER, H., HENNICKER, R.,
MANDEL, L., 2000: Extending UML to Model
Navigation and Presentation in Web Applications.
In: Proceedings of Modelling Web Applications in
the UML Workshop, 2000.

KRYŠTOF, J., CHALUPOVÁ, N., 2008: Prerequisites
for new GUI modelling approach. In: JANECH, J.
Objekty 2008. Žilina: Žilinská univerzita v Žilinie,
2008, p. 127–136. ISBN 978-80-8070-927-3.

KRYŠTOF, J., MOTYČKA, A., 2008: Metamodel for
presentation layer, In: Proceedings of the 11th In-
ternational Multiconference Information Society
– IS 2008. 2008.

KRYŠTOF, J., 2009: An automated platform inde-
pendent realization of GUI with use of UML. In
Gaudeamus. IMEA 2009. Hradec Králové: Uni-
verzity Hradec Králové, 2009, p. 14–18. ISBN
978-80-7041-851-2.

KRYŠTOF, J., 2009: Formal describtion of layout
in graphical user interfaces. In: 11th Interna-
tional Conference MEKON 2009. 1. vyd. Ostrava:
VŠB – TUO, Faculty of Economics, 2009, ISBN
978-80-248-2013-2.

KRYŠTOF, J., 2009: Impact of the Model Driven Ar-
chitecture on Competitiveness of So� ware Pro-
ducers. In: ŽUFAN, P. Firm and competitive envi-
ronment. 2009 – 5. část. Brno: MSD, s. r. o., 2009,
p. 61–65. ISBN 978-80-7392-088-3.

MCFARLANE, N., 2003: Rapid Application De-
velopment with Mozilla. Prentice Hall 2003, 800
pages, ISBN 978-0131423435.

MYERS, B. A., ROSSON, M. B., 1992: Survey on
user interface programming. In: Proceedings of
SIGCHI’92, Monterey, California, 1992.

Object Management Group: MOF 2.0/XMI Mapping
Specifi cation v2.1 [online], 2009 [cit. 2009-06-17].
Available at WWW: <http://www.omg.org/docs/
formal/05-09-01.pdf>

Object Management Group: UML 2.0 OCL Specifi -
cation. [online], 2003 [cit. 2009-06-17]. Available at
WWW: < http://www.omg.org/docs/ptc/03-10-14.
pdf.

Object Management Group: UML 2.0 Superstruc-
ture. [online], 2005 [cit. 2009-06-17]. Available at
WWW: <http://www.omg.org/spec/UML/2.0/Su-
perstructure/PDF>.

PILONE, D., PITMAN, N., 2005: UML 2.0 in
a Nutshell. CA, USA: O Reilly, 2005. ISBN
0-596-00795-7.

PUERTA, A., 1996: The Mecano Project: Compre-
hensive and Integrated Support for Model-Based
Interface Development. In: J. Vanderdonckt (ed.):
Computer-Aided Design of User Interfaces. Na-
mur: Namur University Press, 1996.

RYDER, B. G., SOFFA, M., BURNETT, M., 2005:
The impact of so� ware engineering research on
modern progamming languages, ACM Transac-
tions on So� ware Engineering and Methodology
(TOSEM), 2005.

SCHAUERHUBER, A., WIMMER, M., KAPSAM-
MER, E., 2006: Bridging existing Web modeling
languages to model-driven engineering: a meta-
model for WebML, Workshop proceedings of
the sixth international conference on Web engi-
neering, 2006.

SOLEY, R., 2000: Model Driven Architecture.
[online], 2000 [cit. 2009-06-17]. Available at
WWW: < http://www.catalysis.org/publications/
papers/2001-mda-Overview-00-11-05.pdf>

ZIADI T., TRAVERSON B., JEZEQUEL J., 2002:
From a UML Platform Independent Component
Model to Platform Specifi c Component Models,
In: Proceedings of Workshop in So� ware Model
Engineering, Fi� h International Conference on
the Unifi ed Modeling Language, 2002.

Address

Ing. Jan Kryštof, Ústav informatiky, Mendelova zemědělská a lesnická univerzita v Brně, Zemědělská 1,
613 00 Brno, Česká republika

