ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS

SBORNIK MENDELOVY ZEMEDELSKE A LESNICKE UNIVERZITY V BRNE

Volume LVII

8

3D VISUALIZATION AND FINITE ELEMENT
MESH FORMATION FROM WOOD ANATOMY
SAMPLES
PART IT - ALGORITHM APPROACH

P. Konas

Received: October 14, 2008

Abstract

KONAS, P: 3D visualization and finite element mesh formation from wood anatomy samples, Part 1T - Algorithm
approach. Acta univ. agric. et silvic. Mendel. Brun., 2009, LVII, No. 1, pp. 79-88

Paper presents new original application WOOD3D in form of program code assembling. The work
extends the previous article “Part T - Theoretical approach” in detail description of implemented C++
classes of utilized projects Visualization Toolkit (VTK), Insight Toolkit (TTK) and MIMX. Code is writ-
ten in CMake style and it is available as multiplatform application. Currently GNU Linux (32/64b)
and MS Windows (32/64b) platforms were released. Article discusses various filter classes for image
filtering. Mainly Otsu and Binary threshold filters are classified for anatomy wood samples thresh-
olding. Registration of images series is emphasized for difference of colour spaces compensation is
included. Resulted work flow of image analysis is new methodological approach for images process-
ing through the composition, visualization, filtering, registration and finite element mesh formation.
Application generates script in ANSYS parametric design language (APDL) which is fully compatible
with ANSYS finite element solver and designer environment. The script includes the whole defini-
tion of unstructured finite element mesh formed by individual elements and nodes. Due to simple
notation, the same script can be used for generation of geometrical entities in element positions. Such
formed volumetric entities are prepared for further geometry approximation (e.g. by boolean or more
advanced methods). Hexahedral and tetrahedral types of mesh elements are formed on user request
with specified mesh options. Hexahedral meshes are formed both with uniform element size and
with anisotropic character. Modified octree method for hexahedral mesh with anisotropic character
was declared in application. Multicore CPUs in the application are supported for fast image analy-
sis realization. Visualization of image series and consequent 3D image are realized in VTK format
sufficiently known and public format, visualized in GPL application Paraview. Future work based on
mesh improvement through mesh error statistic, image acquisition and thresholding improvement
by more sophisticated filters together with code optimization for fast image analysis is discussed. Also
fractal characteristics classification on microscopic scale level is taken into account for further work.

wood, anatomy, binary image, finite element, mesh converter

Number 1, 2009

Mapping of pixels intensity values from space of
fixed image into the moving image is made by class
of linear interpolator itk:LinearInterpolateTmage
Function, which evaluates intensity values on non-
grid values of moving image, which is generally de-
formed according to the fixed image.

In presented program two thresholding filters
were used. By utilization of ITK two following fil-
ters were included. Otsu filter based on itkOtsuTh-
resholdImageFilter class and binary filter based on

79

itkBinaryThresholdImageFilter were used. Both of
thresholding filters process image according to ap-
propriate threshold. Whereas Otsu filter automati-
cally computes value of threshold, binary filter al-
lows defining the user value for sensitive separation
of structure from image background.

Mean value of pixels within the selected re-
gion is computed by itkiMeanCalculator and
itk::CovarianceCalculator classes.

80 P. Korias

Contouring is made by another class (itkSimple-
ContourExtractorlmageFilter). Objects of this class
mask pixels of image on interface of structure and
image background. Precisely, it selects pixels which
are within the set of the structure (the last boun-
dary). Although the class offers definition of radius
of interest (and this way the size of kernel for con-
volution), only one pixel of neighbourhood is taken
into account, because of shortening of computing
time.

Meshingisrealized by vtkDelaunay3D class, which
triangulates the significant points of the image and
forms unstructured grid of tetrahedral elements.
Similar approach, but not purely in ITK has been
realized in project of tetrahedral mesh generation
for medical imaging (Fedorov, 2005). This work is
probable one of the most important works in Open-
Source field for quality tetrahedral mesh generation
from image series. Unfortunately project consists of
large amount of source code from various authors
which leads to incompatibility with modern form
of ITK and VTK. Code is also focused on MR images
and not for series of separate 2D images. Big portion
of code use the project PETSc which is not CMake
based and lot of difficulties with platform dependent
code makes almostimpossible to generalize the code
into the pure ITK platform independent program.

Mesh with good quality provides implemented
code of huge project MIMx. This code forms regu-
lar unstructured hexahedral rectilinear mesh with
prescribed size of elements. Also modulus of elasti-
city can be computed on base of image intensity and
input estimation of Young modulus of the structure.
This part of code was developed in MIMx project
and described in Carter 1977.

MATERIALS AND METHOD

Code was written in KDevelop and Microsoft Vi-
sual C++ IDE GUI environment. Both Linux and
MS Windows platform were used for compiling
and testing of code. Multiplatform code is based
on project CMake (Martin, 2005). Classes of ITnsight
toolkit (ITK) (Yoo et al., 2002) and Visual toolkit
(VIK) projects were used for assembling the code.
Very useful source for our work was Ibariez 2005
which provided a lot of basic and advantage code for
image processing and Prata 2004 which was useful
for implementation into C++ code. Final binary file
is small and standalone without any linked libraries.
Processing of images for tetrahedral meshes with
prefiltration and registration takes app. 1.5 hour.
Whereas the most time consuming part is registra-
tion of full images (1 hour) and tetrahedralization (30
minutes).

RESULTS AND DISCUSSION

The application is in this phase without GUT and
user has to specify parameters in command line for
specific control. Numerous parameters allow detail
control of program in all phases and almost in all
available variables of individual object methods.

Program code is relatively huge (more than
1500 code lines). Partial description in the text is
done by simplification and idealization of program
code. Most of mentioned methods keeps C++ nota-
tion and style and should be also readable for users
non skilled in programming. The following dia-
gram represents the schematic flow of application
for image analysis and final output of ANSYS APDL
script (Fig. 3).

3D visualization and finite element mesh formation from wood anatomy samples. Part I

81

I: Command line parameters of application WOOD3D

Number of the first image of series (it is assumed in format img00x.png).

-first N Usually itis 1
-last N Number of the last image of series.
-file filename Filename of output VTK file
. Size of region subtracted from image. Size is defined as vector by three
-size Sx Sy Sz
numbers in pixels. Default is full size of image.
origin Ox Oy Oz Origin for subtracted region. Origin is defined as vector by three numbers in

pixels. Defaultis 00 0

-filter_lower LowerIntensity

Lower intensity value for binary thresholding filter. Default is 0.

-filter_upper UpperIntensity

Upper intensity value for binary thresholding filter. If no value is defined,
then optimal value is automatically computed.

filter_file filename

Filename for output VTK file of thresholded image.

filter N

0=Otsu thresholding filter, 1=Binary thresholding filter

-mesh_size Size

Size of output elements (in pixels)

-scale Cx Cy Cz

Scaling coefficients. Scaling is defined as vector by three numbers. Default is
111

-tetra 0|1

0=no tetrahedrons will be created
1=tetrahedrons are created

-tetra_type 01

0O=no tetras will be created from hexahedral mesh
1=tetras will be created from hexahedral mesh

O=reduction of pixels for tetrahedralization is performed

-reduced0f1 1=reduction is performed
. 0=no prefiltering of individual input images is performed
-prefiltered 0/1 1=prefiltering will be realized
~smoothed 0/1 O=smooth%ng With mean filter is performed
1=smoothing is performed

registered 01 O=individual images are not registestered

8 1=images are registered at the beginning
-alpha N Size of element which is filtered out of mesh (in pixels)

TIXLILTE

LrYITLIY
tosnsns -

T11L

1: Input image of spruce wood

2:3D VTK image

82 P. Kotias

itkimageReader Thresholding of 2D image according to the computed threshold
reads individual image ™! itkOtsuThresholdImageFilter x itkBinaryThresholdTmageFilter

'

itkAffineTransform |_ itkfmageWriter
registration of images - writes prefiltered imaged
itkfmageSeriesReader _| itkRegionOfInterestimageFilter
reads serie of 2D images "\ reads defined region of interest
itkChangeInformationImageFilter _ | itklmageSeriesWriter
spacing of image " | writing of 3D image into the file

Computing of the simple statistics

itkStatistics::ScalarTmageToListAdaptor
itkStatistics::MeanCalculator - mean of image intensity
itkStatistics::CovarianceCalculator - covariance of image intensity
Computing of the threshold for binary thresholding filters Th, =0, Th,=p+o

/

Thresholding of 3D image according to the computed threshold . ﬁ:g?ﬁifijilgr:tme; .
itkOtsuThresholdImageFilter x itkBinaryThresholdImageFilter into the file 8

—

Forming of contour ed image object from thresholded image
itkSimpleContourExtractorlmageFilter (Radius) = contourfilter

Forming of object contourplane(Radius) from contourimage object by contourfilter from each
plane of contourimage

————

Smoothing the contoured 3D image by MeShtl{fig h

; ; ; - rectilinear mes

itkMe anImageFllter(Radlus) itkMimxImageToVTKUnstructuredGridFilter
- tetrahedralized rectilinear mesh
vtkDelaunay3D

- tetrahedralized mesh derived directly

Reducing the number of positive pixels for from previous step

mesh tetrahedralization - unstructured grid

Forming ameshnodesfromreduced image Removing of bad shaped tetrahedrons
and adding mesh nodes for user defined Removing of ghost cells

mesh level (and lower) from rectilinear

mesh ¢

Writing the mesh into the APDL script
(ANSYS FEM sw)

3: Diagram of application flow

Next itk:ImageSeriesReader is initiated for reading ~ and saved into 3D VTK image format (Fig. 2). Regis-
ofthewholenative/prefilteredand/orregisteredimage ~ tration is based on itk:ImageRegistrationMethod. It
series. Images are RGB type without any previous allows compute translation, rotation and scaling pa-
image preparation (Fig. 1). Image series is exported —rameters for optimal images alignment (Code 1).

3D visualization and finite element mesh formation from wood anatomy samples. Part IT 83

registration->SetMetric (metric) ;
registration->SetOptimizer (optimizer) ;
registration->SetInterpolator(interpolator);

TransformType: :Pointer transform = TransformType::New () ;
registration->SetTransform(transform);

fixedImageReader->SetFileName (fixedfilename) ;
movingImageReader->SetFileName (movingfilename) ;
registration->SetFixedImage (fixedImageReader->GetOutput ()) ;
registration->SetMovingImage (movingImageReader->GetOutput ()) ;
fixedImageReader->Update () ;

typedef itk::CenteredTransformInitializer< TransformType, FixedImageType,
MovingImageType > TransformInitializerType;

TransformInitializerType::Pointer initializer = TransformInitializerType::New() ;
initializer->SetTransform transform);

initializer->SetFixedImage (fixedImageReader->GetOutput());
initializer->SetMovingImage (movingImageReader->GetOutput ());

initializer->MomentsOn () ;
initializer->InitializeTransform();

registration->SetInitialTransformParameters (transform->GetParameters ());
typedef OptimizerType::ScalesType OptimizerScalesType;
OptimizerScalesType optimizerScales(transform->GetNumberOfParameters ());
optimizerScales = translationScale;

optimizer->SetScales(optimizerScales);
optimizer->SetMaximumStepLength (steplength);
optimizer->SetNumberOfIterations (maxNumberOfIterations);
optimizer->MinimizeOn () ;
registration->StartRegistration();

Code 1: Registration of image series. Moving image is consequent image which is registered according to previous (fixed)
image.

Prefiltering is based on itk:OtsuThreshold- sensitive separation of structure from image back-
ImageFilter and itk:BinaryThresholdImageFilter. ground (Code 2). Prefiltering is realized on indivi-
Otsu filter automatically computes value of thresh- dual images for unification of colour spaces.
old, binary filter allows defining the user values for

if (filter type == 0)

{

otsufilter->SetInput (onereader->GetOutput ());

otsufilter->SetOutsideValue (255);

otsufilter->SetInsideValue(0);

otsufilter->Update () ;

threshold = otsufilter->GetThreshold() ;

} else

{
binaryfilter->SetInput (onereader->GetOutput ());
binaryfilter->SetOutsideValue (255) ;
binaryfilter->SetInsideValue (0) ;
binaryfilter->SetLowerThreshold (filter lower);
binaryfilter->SetUpperThreshold (filter upper) ;

}

Code 2: Prefiltering of individual images by otsu and binary filter.

Contouring processes the whole image. Never- tours are detected in vicinity of each pixels in radius
theless, individual plane regions are taken into ac- of one pixel (Code 3). Processed image is written into
count in this process and pixels forming the lumens thefile.
boundary are marked for each plane separately. Con-

84 P. Korias

for (int i=0; i<count of planes; i++)

{

Region.SetSize(planesize);
Region.SetIndex (planestart);
plane->SetInput (contourimage) ;
plane->SetRegionOfInterest (Region)

contour->SetRadius (1) ;
contour->Update () ;

for (; !'it.IsAtEnd(); ++it)
{
pindex = it.GetIndex();
cpoint[2]=1i;
ppindex[2]=1i;

if (!'isvalid) std::cout<<(bool)

}
}

contour->SetInput (plane->GetOutput ())

planesize[0]=size[0]; planesize[l]=size[l]; planesize[2]=1;
planestart[0]=0; planestart[1]=0; planestart([2]=i;

itk::ImageRegionIterator<ImageType> it (contour->GetOutput (), Region);

pvalue=contour->GetOutput () ->GetPixel (pindex) ;
contour->GetOutput () -—>TransformIndexToPhysicalPoint (pindex, cpoint) ;

isvalid=contourimage->TransformPhysicalPointToIndex (cpoint, ppindex) ;
isvalid<<std::endl;

if ((long) pvalue != 255) contourimage->SetPixel (ppindex,0);
else contourimage->SetPixel (ppindex,255);

Code 3: Contouring of 3D image by planes

The several virtual grids for each 2" divider (as
scale) of the image size are inserted through points
of 3D image (Code 4). Mesh is based on points of
contour filter, grid points and points from itkMean-
ImageFilter. The filter smears the contours of image.
This way we can obtain non-binary pixel values in

originally binary image which are good candidates
for mesh points that well approximate the region
around the edge of structure and contours in image
respectively (Code 5). Formed codes are simpler and
faster then similar body-centric cubic lattice algo-
rithm (Molino etal., 2003).

vtk point = pixel position;

}

for (1 =1; 1 < mesh levels = (log(max_grid_size)/log(2)); i++)
if (pixel value == is positive in tresholded image &&
pixel position == max grid size)

mesh image -> SetPixel (pixel,1);

points -> InsertNextPoint (vtk point);
mesh grid size = max grid size/2"i;

Code 4: Adding grid points into points of mesh

vtk point = pixel position;

}

for (1 =1; 1 < mesh levels = (log(max grid size)/log(2)); i++)
if (pixel value == is positive in tresholded image &&
pixel value == is nonzero in meanfilter &&
pixel position % mesh grid size == 0)

mesh image -> SetPixel (pixel,1);

points -> InsertNextPoint (vtk point);
mesh grid size = max grid size/2"i;

Code 5: Adding grid points near the edge of structure into points of mesh

3D visualization and finite element mesh formation from wood anatomy samples. Part IT 85

Points formed by the way mentioned above are
triangulated by Delaunay algorithm with object of
class vtkDelaunay3D (Fig. 4). The appropriate pa-

rameter alpha has to be defined for removing of ele-
ments with size bigger than alpha.

tets->Update () ;

vtkDelaunay3D* tets=vtkDelaunay3D::New () ;
tets->AddInput (points) ;
if (user defined alpha == 0)
alpha=max grid size;
tets->SetAlpha (alpha);
tets->SetTolerance (1.0);

Code 6: Tetrahedralization of selected points

4: Tetrahedralized mesh (48k elements) without tesssellation
with prefiltering and registering

Above objects generate a lot of bad shaped el-
ements which are not appropriate for FE analy-
sis. Therefore the mesh is tessellated by objects of
vtkTessellatorFilter class. This class works directly on
vtkUnstructuredGrid class and generates the same
class on the output. It allowed simple implemen-
tation of filter for grid tessellation. Disadvantage of
this old and temporary class (according to VTK Do-
cumentation project statement) is slow triangulation
based on Delaunay method. As a possibility appears
vtkGenericCellTessellator and vtkOrderedTriangu-
lator (Shroeder, 2004) classes which offer very quick
and parallelized/threaded algorithm for triangula-
tion of reduced voxels together with definition of
error metrics for finite elements which have to be
tessellated.

As an alternative to Delaunay tetrahedralization
the MIMx code for hexahedral mesh generation was
also included. Advantage of MIMx code is also sup-
port of threads which accelerates run of application
on multicored CPUs (Code 7).

imageToHexMeshFilter->SetInput (meanfilter->GetOutput ());
imageToHexMeshFilter->SetMaskImage (filtered image);
imageToHexMeshFilter->SetMeshIndexOffset(1);
imageToHexMeshFilter->SetComputeMeshPropertiesOn();
imageToHexMeshFilter->SetComputeMeshNodeNumberingOn() ;
imageToHexMeshFilter->SetMeshResampleSize (mesh size);
imageToHexMeshFilter->SetNumberOfThreads (n_core*n cpu);
imageToHexMeshFilter->SetImageThreshold(threshold);

Code 7: MIMx code for hexahedral mesh from image

Third implemented code for meshing of image
voxels forms unstructured grid with anisotropic ir-
regular mesh similar to tetra mesh, but it is formed

by divided cubes as in previous code. The mesh is
created by declared and modified octree algorithm.

86 P. Korias

for

{

(long 1=0; (i<cubes size); i++)

cube status=check cube (cubes[i],otsufilter);
if (cube status ==)

{

octet=divide cube (cubes[i]);
cubes[1] .meshed=false;

for (long k=0; k<octet.cubes count;

{

k++)

octet.cube[k] .meshed=true;
cubes[cubes sizet+k]=octet.cubelk];
}
cubes size=cubes sizetoctet.cubes count;
Tcube * exp cubes=new Tcube[cubes size];
for (long k=0; k<i; k++) exp cubes[k]=cubes[k];
long velikost cubes=sizeof cubes / sizeof (Tcube);
for (long k=i; k<velikost cubes-1; k++) exp cubes[k]=cubes[k+1];
(short j=0; j<=octet.cubes count;j++)
exp cubes[velikost cubes+j]=octet.cube[]j];

for

delete [] cubes;

Tcube * cubes=new Tcube[cubes size];
for (long k=0; k<cubes size; k++)
delete [] exp cubes;

} else 1if (cube status == cell)

{

}

cubes [k]=exp cubes[k];

cubes count++; mesh[cubes count]=cubes[i];

Code 8: Declared method of dividing cube

Both Delaunay method and octree or dividing
cube method form finite element mesh which is writ-
ten into the ANSYS APDL script and allows forming
of the mesh of finite elements in ANSYS application
environment. Low scale offers big advantage in defi-
nition of wood structure as isotropic. This way, very
accurate response in FE analysis can be obtained (in
proposes that appropriate isotropic material proper-
ties are used). For test purposes structural problem
was assembled with compression type of loading in
longitudinal direction (in direction of cells length).
Response in appearance of von misses equivalent
for our case reveal low gradients and relative conti-
nuous stress distribution (Fig. 5).

5: Stress field on FE model formed by MIMx hexahedral mesh
and loaded by compression in transverse direction. Source
image was not registered and prefiltered.

CONCLUSION

Application WOOD3D is original output for
image analysis which combines several program
techniques of public code under GPL license from
several projects together with several modifications
typical for image analysis of wood anatomy samples.
Usefulness of code was proved on real anatomy sam-
ples which were formed into 3D VTK visualization
objectbyseveral image filters utilization (prefiltering,
registering) and final region dividing by Delaunay
tetrahedralization, octree method and dividing cube
method applying. Final mesh offers user defined pa-
rameter control. Future work will be focused on im-
plementation of advanced tessellation methods to-
gether with mesh error criterion definition for mesh
quality improvement. Although a lot of different
image filters was applied for wood structure empha-
sizing, no unique way was found. Nevertheless, code
is sufficiently robust for soft woods as spruce e.g.
with simple and regular structure. For hard woods
more combinations of input filter parameters have to
be used for appropriate image processing. Even that,
no comparable pure or clear images as soft woods
can be obtained. Enumeration of geometry of wood
structure will be utilized in further works for micro-
structure fractal characteristics evaluation such as
Hausdorff dimension by implementation and modi-
fication of itk:HausdorffDistance image filter.

3D visualization and finite element mesh formation from wood anatomy samples. Part IT

87

SOUHRN

3D vizualizace a tvorba kone¢né prvkové sité z anatomickych vzorkt dfeva,
Cast IT - Algoritmicky pistup

Clanek predstavuje novou ptivodni aplikaci WOOD3D v jejim sestaveném programovém kédu. Pra-
cerozsifuje pFedchozi dil , Part I - Theoretical approach” detailnim popisem implementovanych tfid
C++ pouzitych projektt Visualization Toolkit (VTK), Insight Toolkit (ITK) and MIMX. K6d je napsan
ve formatu CMake a je tak dostupny jako multiplatformni aplikace. Aktudln& byl uvolnén program
pod platformami GNU Linux (32/64b) a MS Windows (32/64b). Clanek diskutuje rtizné tiidy filtra
zejména pro prahovani obrazu. Je zdrazné&n vyznam procesu registrace pro kompenzaci rozdilnos-
ti barevnych prostort fady vstupni obrazka. Vysledny vyvojovy diagram implementované obrazové
analyzy je novym metodologickym p¥istupem pro zpracovani obrazu v oblasti sestavent, vizualizace,
filtrace, registrace a formovani sité kone¢nych prvki. Aplikace vytvaii skript parametrického jazyku
ANSYS parametric design language (APDL), ktery je pIn€ kompatibilni s prostfedim kone¢né& prvko-
vého fesi¢e a modeldfe programu ANSYS. Tento skript obsahuje dplnou definici nestrukturované
kone&né prvkové sité tvofené jednotlivymi elementy a uzly. Diky jednoduché notaci miize byt skript
pouzit pro generovani geometrickych entit na misto elementtl. Takto vytvofené objemové entity jsou
pipravené pro dalsi aproximaci geometrie (napt. booleovskymi & jinymi pokro¢ilymi metodami).
Sité Sestistént jsou formovany jak v podob& rovnomérné, tak s anizotropnim charakterem. V aplikace
je rovnéz deklarovina modifikovand metoda octree pro tvorbu anizotropni sité Sestisténti. Pro rychlé
provedeni obrazové analyzy podporuje aplikace vicejadrova CPU. Vizualizace fady vstupnich obraz-
k@ a nasledny 3D model jsou realizovany ve formatu VTK (dostate¢né zndamém a vefejném formétu)
vizualizované v GPL aplikaci Paraview.

Je diskutovano i zamé&feni budouci prace, kterd bude soustfedéna na zlepseni kvality sit€ pomoci sta-
tistik chyb sité, pofizenim obrizkd a zlepdenim pragovécich technik sofistikovanéjsimi filtry spole¢-
né s optimalizaci kédu pro rychlou obrazovou analyzu. Rovnéz je vzato do tivahy budouci vyuziti
aplikace pro klasifikaci fraktdlovych charakteristik na mikroskopické drovni.

dfevo, anatomie, bindrni obraz, kone&né prvky, pfevodnik sité

The Research project GP106/06/P363 Homogenization of material properties of wood for tasks
from mechanics and thermodynamics (Czech Science Foundation) and Institutional research plan
MSM6215648902 — Forest and Wood: the support of functionally integrated forest management and
use of wood as a renewable raw material (2005-2010, Ministry of Education, Youth and Sport, Czech
Republic) supported this work. This work benefited from the use of the Insight Segmentation and
Registration Toolkit (ITK), open source software developed as an initiative of the U. S. National Li-
brary of Medicine.

REFERENCES

CARTER, D. R., HAYES, W. C., 1997: The compres-
sive behavior of bone as a two-phase porous struc-
ture, Jof Bone Joint Surgery, 59A: 954-962.

FEDOROV, A., CHRISOCHOIDES, N., KIKINIS, R.,
WARFIELD, S., 2005: Tetrahedral mesh generation
for medical imaging, http://hdl.handle.net/1926/35

ITK, 2006: The Tnsight Segmentation and Registra-
tion Toolkit (ITK), www.itk.org

IBANEZ, L., SCHROEDER, W,, NG, L., CATES,],
2005: The TTK Software Guide - Second Edition Up-
dated for TTK version 2.4, Kitware, Inc., 804 p., ISBN
1-930934-15-7

MARTIN, K., HOFFMAN, B., 2005: Mastering CMake
- A Cross-Platform Build System, Kitware, Inc., USA,
250 p.

MOLINO, N., BRIDSON, R.,TERAN, J., FEDKIW, R,
2003: A crystalline, red green strategy for meshing
highly deformable objects with tetrahedra. In: Pro-

ceedings of the 12" International Meshing Roundtable,
103-114.

PRATA, S., 2004: Mistrostvi v C++, Computer Press,
Brno, 1006 p.

SCHROEDER, W.], GEVECI, B., MALATERRE, M.,
2004: Compatible Triangulations of Spatial De-
compositions. In: Proceedings of Visualization 2004,
IEEE Press.

VTK, 2007: VTK Documentation Project (VIK 5.1.0
Documentation), www.vtk.org

YOO, T. S., ACKERMAN, M. J.,, LORENSES, W. E,,
SCHROEDER, W., CHALANA, V,, AYLWARD, S.,
METAXES, D., WHITAKER, R., 2002: Engineer-
ing and Algorithm Design for an Image Process-
ing API: A Technical Report on ITK - The Insight
Toolkit. In: Proceedings of Medicine Meets Virtual Re-
ality, J. Westwood, ed., TOS Press Amsterdam, pp.
586-592.

Address
Ing. Petr Kotias, Ph.D., Ustav nauky o dievé, Mendelova zemé&délska a lesnickd univerzita v Brng, 613 00

Brno, Ceskd republika, e-mail:konas@mendelu.cz

88

